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Abstract. The results of a numerical uncertainty estimation procedure are presented
for a variety of industrial CFD applications with a finite volume RaNS solver. The
numerical uncertainty estimation is indispensable when assessing the reliability of CFD
results. Highly-refined grids and good iterative convergence are required to obtain global
quantities such as force coefficients with a numerical uncertainty of a few percent.

1 INTRODUCTION

The availability of computer power and computational fluid dynamics (CFD) software,
both commercial and open-source, has led to routine use of CFD simulations in mar-
itime industry in the design of ships and offshore structures. The steady, incompressible
Reynolds-averaged Navier-Stokes (RaNS) equations are mostly used, discretized by co-
located finite-volume methods for (un)structured, body-fitted grids. Simulations with
this model provide detailed flow fields that can help in diagnosing problems, improving
designs and studying scale effects.

However, before making any design decisions, the reliability of such simulations needs
to be established. This takes three steps – Code Verification, Solution Verification and
Validation [1, 2]. Code verification comes first as it ensures that the model is correctly im-
plemented in a given software package. Solution Verification then provides an uncertainty
interval (‘error bar’) on a specific simulation result. Finally, Validation compares simula-
tion results to experimental results, both with error bars, i.e. within a given validation
uncertainty, to check that the model is adequate for the problem at hand.

In this paper, we focus on Solution Verification with the numerical uncertainty es-
timation procedure proposed in [3] which is used at the Maritime Research Institute
Netherlands (MARIN). Similar procedures, for example [4, 5], are used elsewhere to pro-
vide error bars of simulation results. These error bars allow the CFD engineer to assess
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the reliability of the results and make informed design decisions. A numerical uncertainty
of a few percent can be acceptable, depending on the purpose. For example, in applica-
tions related to resistance and propulsion of ships, an uncertainty of 1% is desired while
in applications related to wind and current loads on offshore structures an uncertainty
of 10% is sufficient. This means that practical applications have different accuracy re-
quirements and so acceptable levels of validation uncertainty are problem dependent. On
the other hand, the CFD engineer can influence the numerical uncertainty by changing
the simulation setup such as domain size, grid resolution, convergence criteria, turbulence
models, etc.

The main question in this paper is whether and how reasonably low levels of uncertainty
can be obtained for a wide range of practical applications from maritime industry. To
answer this question, we present a selection of cases, performed with MARIN’s CFD
software ReFRESCO [6, 7], for which uncertainty estimation results are published in the
open literature. ReFRESCO solves multi-phase (unsteady) incompressible flows with the
RaNS equations, complemented with turbulence models, cavitation models and volume-
fraction transport equations for different phases. It is similar to generic commercial CFD
codes but only aimed at – and optimized for – maritime applications. It has been verified
using the method of manufactured solution [8] and so it is ‘ready’ for Solution Verification
exercises.

The uncertainty procedure is summarized in Section 2 before presenting and analyzing
the applications in Section 3. In Section 4 conclusions are drawn on the levels of numerical
uncertainty and the circumstances under which these are attained.

2 NUMERICAL UNCERTAINTY ESTIMATION PROCEDURE

The verification and validation procedure is based on research carried out over the past
decade by IST. A detailed description is given in [3]. We summarize the procedure in this
section.

2.1 Error estimation

At the core of the procedure is an estimator of the discretization error based on the
truncated power series expansion

φi = φ0 + αhpi (1)

where φi is a quantity of interest obtained on grid i, φ0 is an estimate of the (unknown)
exact value φexact, α is a constant, hi is the typical cell size of grid i and p is the observed
order of grid convergence. Thus, simulation on three different grids is needed to determine
the three values φ0, α and p. For cases that comply with all the assumptions behind
Equation (1), a verified code will then yield the theoretical order of convergence, typically
p = 2 for the considered finite volume method, together with the approximation φi − φ0

of the discretization error φi − φexact on grid i.
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For more elaborate cases, however, the theoretical order is not always observed because
the underlying assumptions cannot always be satisfied. These assumptions are that:

• the discretization error is significantly larger than the iterative error and/or the
round-off error,

• the discretization is the same on every grid (no grid-dependent switches such as
limiters),

• the grids are in the asymptotic range (fine enough to justify the truncation of the
power series expansion),

• the grids are geometrically similar (the ratio hi/hj of two grids is constant in the
computational domain).

In practical CFD applications, the round-off error is small enough when the simulation
is done in double precision but the iterative error can not always be reduced to the
same level. The second assumption is also questionable as various limiters are typically
used to avoid spurious oscillations in the numerical solution. The third assumption may
require very fine grids that are too costly while the fourth assumption will depend on the
capabilities of the grid generation software.

When one or more of these assumptions do not hold, the observed order p can become
either unrealistically small (p < 0.5) or large (p > 2.1) compared to the theoretical order.
In that case, several alternative expansions are used that fix the value of p to first or
second order or a combination:

φi = φ0 + αhi

φi = φ0 + αh2
i (2)

φi = φ0 + α1hi + α2h
2
i

Furthermore, by using more than three grids, the values φ0, α and p can be determined
with weighted or non-weighted least-squares fit that depends on the standard deviation
of the fit. The value φ is given a larger weight on the finer grids where the best results are
expected. The standard deviation of the least-squares fit provides additional information
on the quality of the estimator: a low standard deviation implies a good agreement with
the power series expansion and hence a reasonable estimation of the discretization error.

Once the discretization error has been estimated, it is combined with a safety factor
to yield the uncertainty estimator.

2.2 Uncertainty estimation

The uncertainty estimator Uφ is meant to provide a 95% confidence interval:

φi − Uφ ≤ φexact ≤ φi + Uφ (3)
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In our procedure, it depends on the error estimator εφ = φi − φ0, the standard deviation
σ from the least-squares fit and the difference between the actual value φi and its least-
squares fit φLS:

Uφ =

{
1.25εφ + σ + ‖φi − φLS‖ for σ < ∆φ

3 σ
∆φ

(εφ + σ + ‖φi − φLS‖) else
(4)

where ∆φ is a measure for the data range defined as

∆φ =
max(φi)−min(φi)

ng − 1
(5)

where ng denotes the number of grids. The low safety factor of 1.25 is used when the
standard deviation of the least squares fit is relatively small which indicates a good error
estimation. Note that the uncertainty estimation procedure reduces to the Grid Conver-
gence Index (GCI) procedure from [1, 2] when the deviation of φi from the least-squares
fit is small. The extra terms are introduced to deal with the scatter and noise that occur
in practical applications.

The numerical uncertainty procedure has been thoroughly tested for a variety of cases
including turbulent flow over a flat plate and over a backward-facing step and the flow
around a tanker, see for example [3, 8, 9] and the references therein. Furthermore, manu-
factured solutions for turbulent flow, where φexact is known, were used to directly evaluate
the quality of the uncertainty estimator [3].

3 UNCERTAINTY IN MARITIME INDUSTRIAL APPLICATIONS

The main question in this paper is whether reasonable levels of uncertainty can also
be obtained for a wide range of practical applications with reasonable grid densities. To
answer this question, the uncertainty estimation method is applied to various cases from
maritime industry, simulated with MARIN’s CFD software ReFRESCO.

3.1 Description of the applications

Six different cases are selected to give a fair impression of the different CFD applications
for which uncertainty estimation is being done at MARIN and of the typical results that
can be expected. The selection covers ships, offshore and navy applications, for Reynolds
numbers from model scale O(106) to full scale O(109). All results are published in open
literature to which we refer for details.

(a) LNG carrier Current loads on a liquefied natural gas (LNG) carrier are computed
for model and full scale in [10]. Numerical uncertainty is determined for three
current inflow angles in order to establish whether the differences between model
and full scale are true scale effects and not tainted by numerics.
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Table 1: Overview of number of grid cells (in millions) used in each application

Case Coarsest grid Finest grid grids in series
(a) LNG carrier 0.7 5.7 5
(b) Container carrier 0.3 5.2 5
(c) Semi-submersible 1.2 19.3 5
(d) Submarine hull 0.05 2.8 8
(e) Submarine 0.11 24.0 9
(f) Propeller 1.5 24.2 5

(b) Container carrier Maneuvering coefficients are computed in [11] for a container
carrier, amongst other cases. Numerical uncertainty is determined for several drift
and yaw angles before using the coefficients in a maneuvering simulation program.

(c) Semi-submersible A scale effect study similar to (a) is done for current loads on a
semi-submersible at model and full scale in [10].

(d) Submarine hull In [12], maneuvering coefficients are computed for a generic sub-
marine hull at fifteen different inflow angles. Numerical uncertainty is estimated
for two inflow angles in order to determine suitable grid densities for this type of
application.

(e) Submarine In [13], resistance and pitch moment are computed for a generic sub-
marine in straight flight. Numerical uncertainty is estimated to assess the effect of
various grid stretchings towards the hull for two different turbulence models.

(f) Propeller Thrust and torque coefficients are computed in [14] for three propellers in
open-water and a range of loading conditions. Numerical uncertainty is determined
for one of these propellers, the INSEAN E779A at design condition. This gives useful
information on the grid densities needed for other propellers in similar conditions.

3.2 Grid generation

The grids for all six cases have been generated with the package GridPro [15] as it allows
the construction of geometrically similar grids, in conformance with the assumption in
the error estimator. Figure 1 gives an impression of these grids. The user first generates
the finest grid and then obtains the coarser grids in the series by specifying a coarsening
factor and the number of grids. A coarsening factor 3

√
2, for example, roughly halves the

total number of cells from one grid to the next. Table 1 shows an overview of the grid
densities and the number of grids in a series. Case (d) has the coarsest grids, ranging from
50 thousand cells to 2.8 million; case (f) has the finest grids, ranging from 1.5 million cells
to 24.2 million. In all applications, a series of at least five grids is used for the uncertainty
estimation; case (e) has the largest series with nine grids.
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(a) LNG carrier [10] (b) Container carrier [11]

(c) Semi-submersible [10] (d) Submarine hull [12]

(e) Submarine [13] (f) Propeller [14]

Figure 1: Impression of the block-structured grids used in each application.

6



Christiaan M. Klaij, Guilherme Vaz and Lúıs Eça

3.3 Iterative convergence

The iterative convergence is carefully reported for all cases as it is required that the
iterative error is two to three orders of magnitude smaller than the discretization er-
ror [9, 16], in accordance with the assumption in the error estimator. The level of con-
vergence, however, is highly case dependent. A drop of at least 5 orders in the residuals
of the momentum and mass equations, is attained for cases with weak flow separation,
for example a hull at moderate inflow angles or a propeller around design load. When
inflow angles are increased and significant flow separation occurs, the residuals still drop
2 or 3 orders before stagnating. However, in such cases, the use of a mathematical model
that assumes statistically steady flow is questionable. Nonetheless, the iterative error can
affect the estimated uncertainties. Iterative convergence to the level of machine precision
is not reported although residual drops of 8 orders are found in case (e) and (f).

3.4 Uncertainty estimation

Since the grids are block-structured and the same coarsening factor is applied in each
block and in each direction, the typical cell size h can be defined as 1/ 3

√
N with N

designating the total number of cells. Thus, the relative step size between the coarser
grids i > 1 and the finest grid i = 1 becomes

hi
h1

= 3

√
N1

Ni

(6)

Figure 2 shows uncertainty estimates representative of the six cases considered. The
relative step size is shown on the x-axis of the uncertainty graphs, the y-axis shows the
observed quantity of interest φi as data points together with their least-squares fit. The
uncertainty interval is shown for the finest grid at hi/h1 = 1 and the experimental value,
if available, is shown at position hi/h1 = 0 for comparison.

3.5 Discussion of uncertainty results

The quantity φ of interest in case (a) is the force coefficient in the direction perpendic-
ular to the ship for bow-quartering current at full scale with Re = 5 ·108. The uncertainty
of 2% is quite low for such a large inflow angle. Case (c) shows the same coefficient at
a similar inflow angle, only this time at model scale with Re = 5 · 105. The uncertainty
here is 5.5%, probably because of the blunt shape of the semi-submersible which leads to
more extensive flow separation than the slender shape of the LNG carrier. Case (b) shows
an uncertainty of 9% in the yaw moment of the container carrier for a non-dimensional
yaw rate γ = 0.4 at model scale with Re = 1.2 · 107. Case (d) shows the pressure compo-
nent of the yaw moment for the submarine hull at a 18◦ drift angle at model scale with
Re = 1.4 ·107. Here, the uncertainty is below 1%. Such a low uncertainty is also obtained
in case (e) for the resistance coefficient of the submarine in straight flight at model scale
with Re = 7.5 · 105, but only if the grid is sufficiently stretched towards the wall. The
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uncertainty in the thrust coefficient of the propeller case (f) is less than 5% in design
conditions (advance ratio J = 0.747 and model scale Re = 1.7 · 106).

These specific uncertainties were selected from the many results presented in the six
references and are neither the worst nor the best; they are meant to give a fair impression
of what can be expected in practical applications. For example, Figure 2 shows significant
deviation of the data points from the least square fit (scatter), especially in cases (c) and
(d). Case (c) shows the largest scatter, even for the finer grids in the series, which
illustrates the danger of using only 3 grids for uncertainty estimation. In case (d), the
three coarsest grids deviate from the trend and are omitted from the least-squares fit;
these grids are clearly not in the asymptotic range assumed by the error estimator. Case
(e) illustrates the grid sensitivity of the uncertainty estimator: a clever choice of grid
stretching greatly reduces the numerical uncertainty. Cases (b) and (d) also show that
the observed order of grid convergence is not necessarily equal to the theoretical order in
practical applications. Nonetheless, the overview given in Figure 2 demonstrates that the
estimation of the numerical uncertainty in practical applications is not only feasible but
also essential.

Finally, note that the selection shows a variation in numerical uncertainty from 1% to
9%. A few percent is reasonable for engineering purposes and can be attained for many
cases with the current grid generation and CFD tools. It sends a clear message to the
CFD engineer to doubt any design ‘improvements’ of a few percent as well as the meaning
of the difference of a single computation with a given experimental result.

4 CONCLUSION

In many of theses cases, numerical uncertainties below 5% are obtained for global
quantities such as force coefficients, which is low enough for practical purposes. When
available, the experimental values are often within this range, thereby validating the
RaNS model for this level of validation uncertainty in these cases. What these cases have
in common are highly-refined, block-structured grids, good iterative convergence, and
modest inflow angles. When these conditions are not fulfilled, the numerical uncertainty
can be higher. These applications clearly show under which circumstances reliable CFD
results can be obtained.

Some unsteady RaNS results are presented in [10] without uncertainty estimation.
The current uncertainty estimation procedure can be extended to unsteady simulations
by considering not only multiple grids, but multiple time-step sizes as well. Doing so
adds an order of magnitude to the simulation costs. However, as computational resources
continue to grow, this topic can be addressed in the near future. Another direction of
future research could be the extension of uncertainty estimation to unstructured, locally
refined grids that are increasingly popular in commercial CFD software. This is not trivial
as the meaning of asymptotic grid refinement (for a typical cell size h → 0) is lost on
unstructured grids that are only refined in local regions of interest.
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(a) LNG carrier [10]
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(b) Container carrier [11]

(c) Semi-submersible [10] (d) Submarine hull [12]

(e) Submarine [13] (f) Propeller [14]

Figure 2: Impression of the uncertainty estimates obtained for the finest grid in each application.
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