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Abstract. The paper presents an innovative dissipation-based solution algorithm for
a phenomenological 3D constitutive model for shape memory alloys (SMA), set in the
framework of generalized standard materials, within the formalism of thermodynamics of
irreversible processes. The proposed solution scheme aims at detecting all mathematical
singularities inherent to the formulation itself, and, in the discrete setting, is capable of
filtering out the relevant numerical instabilities applying a check and treat paradigm. No
regularization is introduced into the constitutive equations. Numerical results on single
material point strain/stress - driven evolutions are reported to validate the proposed
method.

1 INTRODUCTION

Thermodynamics with internal variables [1] is a well established framework for the
development of constitutive models for shape memory alloys (SMA), consistent with the
fundamental principles of thermodynamics. The main feature of this approach is to
introduce an appropriate energy potential ψ (Helmholtz free energy) depending on internal
variables, usually an inelastic macroscopic strain tensor etr (transformation strain), and
on observable control variables, usually a total strain tensor ε and the temperature T .
Classically, constitutive equations are derived writing state equations, which define entities
conjugate to the control variables and to the internal variables, together with a rate
equation for the transformation strain. The latter is typically postulated as a flow rule
associated to some plasticity-like yield function f(X), or transformation-function, defining
the elastic domain in terms of the stress measure X, conjugate to etr.
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The present work focuses on the SMA constitutive model originally proposed by Souza
et al. [2] and subsequently developed by Auricchio and Petrini [3], where a Helmholtz
free energy function is considered, split into elastic, transformation, and chemical con-
tributions. The energetic formulation of the constitutive model amounts to a nonlinear
differential inclusion involving the total energy functional and the dissipation potential.
This functional has non removable singularity points that need special treatment in re-
gard to the solvability of the integrated constitutive equations. The proposed methodol-
ogy filters out all the numerical instabilities connected to such singularities without any
regularization of the model, and in particular provides the following results:

• A robust solution algorithm capable of checking admissibility of a solution either
coinciding or falling in the nearness of a singularity point;

• An extension to a more general class of transformation functions, i.e. of dissipation
mechanisms,

• A robust material model subroutine for FEM implementation.

Numerical tests on a single integration point are provided to prove such points.

2 SMA CONSTITUTIVE MODEL

The local thermodynamic state of the material is defined by the Green strain ε, the
absolute temperature T , regarded as control variables, and by the symmetric traceless1

transformation strain tensor etr describing the kinematics of the product phase. The
Green strain is additively decomposed as:

ε = εe + etr (1)

being εe the elastic strain. The norm ||etr|| indicates a measure of the phase transition
from the parent phase to the product phase, hence etr is constrained to lie in the saturation
domain S = {etr ∈ SymDev : ‖etr‖ ≤ εL} [2]. The material parameter εL is related to the
maximum transformation strain reached at the end of the forward isothermal transfor-
mation during a uniaxial test. Given its tensorial character, etr is capable of representing
the reorientation of the product phase in the saturated condition [4].

The Helmholtz free energy density ψ is assumed to be a strictly convex potential
depending on the local state, given by:

ψ(εe, etr, T ) = ψe(εe) + ψch(etr, T ) + ψtr(etr) + IS(etr) , (2)

where:

1In the following, the space of symmetric traceless second-order tensors is denoted by SymDev.
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• ψe is the elastic strain energy, which, under the assumption of linear isotropic elas-
ticity, is given by:

ψe(εe) =
1

2
K(tr εe)2 +G‖ dev εe‖2 (3)

with K the bulk modulus and G the shear modulus;

• ψch is the chemical energy, due to the thermally-induced martensitic transformation:

ψch(etr, T ) = β∆T+‖etr‖ (4)

with β a material parameter related to the dependence of the critical stress on the
temperature, and ∆T+ = 〈T −Mf〉, being Mf the temperature corresponding to the
end of the phase forward transformation, and 〈•〉 the positive part of the argument;

• ψtr is the transformation strain energy, due to transformation strain hardening:

ψtr(etr) =
1

2
h‖etr‖2

(5)

with h a material parameter defining the slope of the linear linear stress - transfor-
mation strain relation in the uniaxial case.

• IS(etr) is the indicator function of the saturation domain, i.e.:{
IS(etr) = 0 if 0 ≤ ‖etr‖ ≤ εL

IS(etr) = +∞ otherwise
(6)

Following standard thermodynamics arguments [5], the quantities thermodynamically
conjugate to the state variables are derived:

σ = ∂εeψ ,

X = −∂etrψ ,
η = −∂Tψ .

(7)

where, the symbol ∂ denotes subdifferentials in the sense of Convex Analysis, σ is the
Cauchy stress, X ∈ SymDev is the so called transformation stress, and η is the entropy
density. Equation (7)2 is usually rewritten as:

X = s−α (8)

where s is the stress deviator, and α ∈ SymDev is the back stress tensor, given by:

α = β∆T+∂etr‖etr‖+ h etr + ∂etrIS(etr) (9)
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The subdifferential of the indicator function IS(etr) results:

∂etrIS(etr) =


0 if ‖etr‖ < εL

γ ∂etr‖etr‖ if ‖etr‖ = εL

∅ if ‖etr‖ > εL

(10)

being γ ∈ R+
0 the thermodynamic reaction force associated to constraint (16), i.e.:{

γ = 0 if 0 ≤ ‖etr‖ < εL

γ ≥ 0 if ‖etr‖ = εL

(11)

A flow law for the transformation strain is derived assigning a transformation function
f(X), which defines the elastic domain in stress space E = {X ∈ SymDev : f(X) ≤ 0},
and invoking the postulate of maximum inelastic work [5]. It results:

ėtr = ζ̇∇f(X) (12)

with the Kuhn-Tucker conditions ζ̇ ≥ 0 , ζ̇f = 0. The above results is usually referred as
normality rule, and implies convexity of the elastic domain E . Equivalently, the same evo-
lution equation may be obtained introducing the dissipation pseudo-potential associated
to the transformation rate ėtr:

D(ėtr) = sup
T∈E

{
T : ėtr

}
(13)

such that D(ėtr) = X : ėtr, being X the admissible thermodynamic stress at equilibrium.
Dissipation is a degree 1 positively homogeneous convex functional, null at the origin;
hence, rate independence of the evolution problem follows [6].

The function f(X) rules the activation of inelastic flow: ėtr = 0, if f(X) < 0, or ėtr 6= 0,
if f(X) = 0. In the present context f(X) is assumed to be deviatoric isotropic. Hence, it
can be represented as f(ρX, θX), where ρX ≥ 0, θX ∈ [0, π/3] are the Haigh–Westergaard
coordinates of X [7, 8]. In particular, the function f is taken in the following form:

f(ρX, θX) = ρXg(θX)−
√

2

3
σy0

(14)

where g is a C2, positive, even, periodic function with period 2π/3, such that g′′ + g > 0;
the parameter σy0

is, respectively, the initial transformation limit in tension σt, if g(0) = 1,
or in compression, σc, if g(π/3) = 1.

2.1 Variational incremental problem

In view of implementation into a time marching solution procedure, the rate equations
reported in the previous section are integrated in time, applying the backward Euler
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integration scheme. Reference is made to time instants tn, and tn+1 > tn, with time step
∆t := tn+1−tn and to the corresponding increment of state variables (∆ε,∆etr,∆T ). The
material state and the stress are known at tn and the increment of strain and temperature
∆ε, and ∆T are given, leading to the values εn+1 = εn + ∆ε, and Tn+1 = Tn + ∆T , at
tn+1.

Recongnizing ∆etr as the main unknown, the material state evolution obeys to the
following variational problem in incremental form [9]:

F incr = inf
{∆etr}

c(∆etr)≤0

{
ψ(εn+1 − etr

n −∆etr, etr
n + ∆etr, Tn+1) +D(∆etr)

}
. (15)

where c(∆etr) represents the unilateral saturation constraint, i.e.:

c(∆etr) =
‖etr

n + ∆etr‖2

ε2
L

− 1 (16)

Introducing the Lagrangian associated to variational problem (15):

L(∆etr, γ) = ψ(εn+1 − etr
n −∆etr, etr

n + ∆etr, Tn+1) +D(∆etr) + γc(∆etr) , (17)

with γ a Kuhn-Tucker multiplier for c(∆etr), stationary conditions for problem (17) are:

− ∂∆etrψ(εn+1 − etr
n −∆etr, etr

n + ∆etr, Tn+1)− γ∂c(∆etr) ∈ ∂D(∆etr) ,

c(∆etr) ≤ 0 ,
(18)

with the complementary conditions: γ ≥ 0, cγ = 0.

3 SOLUTION ALGORITHM

The evolution of the material state for the SMA constitutive model under investigation
is governed by the constrained nonlinear differential inclusion eq. (18). The residual form
of those equations is:

r(x) :=

{
−Xn+1(εn+1,∆etr, Tn+1) + ∂D(∆etr) + γ∂c(∆etr)

c(∆etr)

}
for x :=

{
∆etr

γ

}
(19)

being:

Xn+1(εn+1,∆etr, Tn+1) :=− ∂∆etr
(
ψe(εn+1 − etr

n −∆etr) + ψch(etr
n + ∆etr, Tn+1) +

+ ψtr(etr
n + ∆etr)

)
(20)

Eq. (19) is solved with Newton-Raphson method, using the consistent tangent:

T =

[
H∆etrψ(εn+1,∆etr, Tn+1) +HD(∆etr) ∇c(∆etr)

∇tc(∆etr) 0

]
(21)
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The Hessian H∆etrψ(εn+1,∆etr, Tn+1) and HD(∆etr) may be found explicitly in [10].
Solution of the equations (19) presents numerical difficulties since each of the sub-

gradients ∂ψch(etr
n+1) and ∂D(∆etr), becomes a set if the solution coincides with their

respective singularity point: etr
n+1 = 0 (i.e. ∆etr = −etr

n ), and ∆etr = 0: In any of those
cases:

∂ψch(0, Tn+1) =
{
T ∈ SymDev : ‖T‖ ≤ β∆T+

}
(22)

∂D(0) = {T ∈ SymDev : f(T) ≤ 0} ≡ E (23)

and the corresponding Hessians are unbounded. In order to have a robust solution scheme,
the proposed solution algorithm proceeds as follows:

1. Check if solution coincides with any singularity point;

2. If check 1. is not satisfied, then solve (19) for a regular solution, expectedly far from
any singularity point, via Newton-Raphson method;

3. If solution 2. is not found, then check if solution is neighboring any singularity
point.

3.1 Check on singularity point solutions

Admissibility of a singularity point solution requires to verify if such particular solution
satisfies eq. (18). To this end, the trial transformation stress Xtrial

n+1(εn+1,∆etr, Tn+1),
relative to the regular part of the free energy ψreg, is introduced. Four cases may be
distinguished:

(S.1) ∆etr = 0, ||etr
n+1|| < εL. In this case: ψreg = ψe + ψtr + ψch.

Setting Xtrial
n+1 = − ∇ψreg|∆etr=0, the thermodynamic inclusion becomes:

Xtrial
n+1 ∈ E , (24)

to be veified by checking if f(Xtrial
n+1) ≤ 0.

(S.2) ∆etr = 0, ||etr
n+1|| = εL. In this case: ψreg = ψe + ψtr + ψch.

Setting Xtrial
n+1 = − ∇ψreg|∆etr=0, the thermodynamic inclusion becomes:

Xtrial
n+1 − γ∇c(0) ∈ E , (25)

to be verified by checking if there exists γ > 0, such that f(Xtrial
n+1 − γ∇c(0)) = 0,

i.e. by searching a zero of a convex scalar function.

(S.3) etr
n+1 = 0. In this case: ψreg = ψe + ψtr.

Setting Xtrial
n+1 = − ∇ψreg|∆etr=−etrn

, the thermodynamic inclusion becomes:

Xtrial
n+1 −∇D(−etr

n ) ∈ ∂ψch(0) , (26)

to be verified by checking if ||Xtrial
n+1 −∇D(−etr

n )|| ≤ β∆T+.
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Table 1: SMA material properties.

E h ν εL Mf β σy0

70000 MPa 500 MPa 0.33 0.03 253.15 K 7.5 MPa K−1 45 MPa

(S.4) ∆etr = 0, etr
n+1 = 0. In this case: ψreg = ψe + ψtr.

Setting Xtrial
n+1 = − ∇ψreg|∆etr=etrn+1=0, with ψreg = ψe + ψtr, the thermodynamic

inclusion becomes:
Xtrial

n+1 ∈ ∇D(0) + ∂ψch(0) , (27)

to be verified by checking if Xproj
n+1, the orthogonal projection of Xtrial

n+1 onto ∇D(0) ≡
E , satisfies the inequality ‖Xtrial

n+1 −Xproj
n+1‖ ≤ β∆T+. The sketch of step 3., with the

checks on nearly singular cases, is omitted here, for brevity reasons. Details can be
found in reference [10].

4 NUMERICAL TESTS

The efficiency of the proposed state update algorithm in checking and treating the
singular and nearly singular cases previously examined, is demonstrated by solving some
selected isothermal non-proportional biaxial loading histories, under mixed stress-strain
control [4]. In particular, an initial boundary value problem is considered, by prescribing
two strain components and keeping equal to zero the stress components corresponding to
the non-controlled strains. A two-level solution is applied: a Newton method is used to
solve the equation enforcing zero stress components; at a lower level, the state update
algorithm solves the constitutive equations for the transformation strain, computes the
stress tensor plus the consistent material tangent stiffness, required by the upper level
solver to advance iteratively. This test setup tackles specifically the question of accuracy
and robustness of the state update algorithm and of accuracy of the material tangent
stiffness operator.

Material properties [4] for the present numerical simulations are reported in Table 1,
assuming the material in the parent phase (i.e. ‖etr‖ = 0) at the beginning of a loading
history. For simplicity, the prescribed stress tensor σ̄ has a piece-wise linear evolution in
time starting from zero. A von Mises transformation function is chosen, i.e. g(θX) = 1.

4.1 Non-proportional biaxial hourglass loading histories

The test is carried out at constant temperature T = 285.15 K. The controlled strain
components vary according to the time history reported in Tab. 2, where they are in-
dicated generically as ε̄1 and ε̄2, respectively. Two loading histories are examined. The
first one sets ε̄1 = ε11, ε̄2 = ε22, the second one sets ε̄1 = ε11, ε̄2 = γ12.

Figures 1 and 2, respectively, report the material response in terms the stress compo-
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Figure 1: Non-proportional biaxial hourglass test for controlled strain components ε11 − ε22. T =
285.15 K. Stress plot σ22 vs. σ11 (L). Transformation strain norm plot ρetr vs. time t (R). Fine time
discretization: ∆t = 1/100 (continuous line); coarse time discretization: ∆t = 1/10 (bullets).
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Figure 2: Non-proportional biaxial hourglass test for controlled strain components ε11 − γ12. T =
285.15 K. Stress plot τ12 vs. σ11 (L). Transformation strain norm plot ρetr vs. time t (R). Fine time
discretization: ∆t = 1/100 (continuous line); coarse time discretization: ∆t = 1/10 (bullets).

Table 2: Non-proportional biaxial hourglass loading history. Time history for controlled strain compo-
nents. ε̄max = 4%

.

t 0 1 2 3 4 5 6 7 8
ε̄1 0 ε̄max 0 −ε̄max 0 ε̄max 0 −ε̄max 0
ε̄2 0 ε̄max ε̄max ε̄max 0 −ε̄max −ε̄max −ε̄max 0
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nents dual of the controlled strains, highlighting the strongly nonlinear character of the
constitutive behavior for non-proportional loading. Each loading history is solved adopt-
ing a coarse and a fine time discretization: no sensitivity to time discretization is observed.
Furthermore, the plots of transformation strain norm ρetr vs time enlighten the algorithm
capability to check and treat the singularity points solution as well as nearly-singular so-
lutions. Noteworthy, the quantity ρetr computed with the proposed method presents the
expected sharp threshold at the beginning of the phase transition; such would not be the
case applying a transformation strain norm regularization, to overcome the singularity
etr = 0 [3].

5 CONCLUSIONS

In this paper an innovative dissipation-based solution algorithm for 3D phenomenolog-
ical constitutive models for SMA has been presented. The key features of the proposed
methodology are: (i) the detection and treatment of singularities inherent to the en-
ergy formulation of che constitutive model, without any regularization of the constitutive
equations; (ii) an efficient computation of the dissipation function and its derivatives,
adopting the Haigh-Westergaard invariants of the transformation stress; (iii) an exten-
sion on the choice of the transformation function and hence on the activation criterion
for phase transition; iv a robust constitutive solver for finite element simulation.
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