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Abstract. This work studies the initiation of motion for sediment ellipsoidal particles
under the action of laminar and turbulent flows. An analytical and a numerical approach
compute the motion of the particle for different conditions establishing a relationship be-
tween the Reynolds number Re⋆ of the flow and the non-dimensional critical shear stress τ ⋆

(Shields diagram). Previous formulations have not been developed for ellipsoidal particles
and therefore do not fully simulate variety of shapes included in the main experimental
contribution of [7], that shows a dispersion due to the variety of shapes and orientation
of the particles.

Numerical and analytical approximations calculate the initiation of motion due to
new drag and lift forces developed by [5] for inclined ellipsoids. The discrete element
method (DEM) ([6]) is used in the numerical approach, since it is able to simulate the
motion of the ellipsoids taking into account the contact interactions. Additionally, DEM
computes the evolution of motion giving realistic results and reproducing the experimental
results of [7] for a variety of conditions.

1 Introduction

The analysis of the conditions for the motion of a particle in a sedimentary bed under
the action of a flow is a topic of long research treated since the experiments of Shields
[7] to, e.g., analytical works of Dey [3] or numerical simulation based on the Discrete
Element Method (DEM) by Bravo et. al. [1]. These works address a relationship for a
non-dimensional critical shear stress τ ⋆ (Shields diagram) in terms of the friction Reynolds
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number Re⋆, considering the sediment grains as spherical particles. The experimental
results show a scattering mainly due to an ambiguous definition of the threshold condition,
dependent on the shape of the particles, compactness and orientation.

Scant research has been produced in analytical and numerical formulations for the
initiation of motion of non spherical particles. In this work we study the initiation of mo-
tion of ellipsoidal particles by novel analytical and numerical approaches. The analytical
method considers the equilibrium of an ellipsoidal particle resting on a rough sediment bed
and computes the critical shear stress for the starting motion by rolling or sliding. The
numerical procedure simulates the starting motion by the DEM, introducing an aggre-
gate of particles as sedimentary bed (see Fig. 1). Initiation of motion is examined taking
into account frictional contact interaction with the bottom particles. Additionally, DEM
computes the evolution of motion after breakage of equilibrium. The resulting approaches
consider a more realistic configuration than the previous works: a realistic representation
of the geometrical arrangement of non-cohesive particles. The geometrical configuration
is complemented by a detailed representation of the distribution of stresses transmitted
by the fluid flow on ellipsoidal particles, see [5].

As a summary of the main goal of this work, a relationship Re⋆–τ ⋆ (Shields diagram)
as function of the size of the axes and inclinations of the ellipsoid is produced by the
use of analytical and numerical methodologies. The results fit with the scattering of the
experimental data of [7]. The DEM produces more realistic results than the analytical
since it is able to capture stresses that produce the subsequent breakage of the equilibrium
of the particle.

2 Analytical model

The model for the initiation of motion of a single ellipsoidal particle resting on the bed is
defined by the bottom layer. This is a two dimensional layer with two rows of particles (left
Fig. 1) and modeled as a repetition of the periodic pattern shown in right Fig. 1. The lower
row is composed by fixed cylinders(e.g. [10]) that are numerically constrained by lateral
boundaries (represented in right Fig. 1). A randomly oriented set of ellipsoidal particles
with an initial stable orientation but able to move forms the top layer. The particles on
the bottom row partially restricts motion of the ellipsoid located on the top.

The particles on the bottom are cylinder of radius R and the ellipsoids are considered
as ellipsoids of revolution with axes defined by the semi–axes a, b = c, and by α, angle
of inclination of the largest axis of the ellipsoidal particle (see Fig. 2, left and right). The
length of the semi–axes are related by the parameter f , then b = a · f and c = a · f . The
rest of the geometrical variables depicted in Fig. 2–entrainment angles β12, β13, angles γ12,
γ13, and distances d12, d13–are obtained imposing simple geometric relations. Ellipsoidal
particle initiates its motion by sliding or by rolling. In case of sliding there is a second
situation called special case that gives rise to particle detachment from point B and
its sliding over cylinder 2© (Fig. 2 left). This situation will be discussed in detail in the
numerical experiments.
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Figure 1: Sediment bed composed by the repetition of a simple pattern of cylinders and a series of
ellipsoids on the top with stable orientation (right)
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Figure 2: Forces acting on particle (left), submerged weight W , drag force fα
d , lift force fα

l , (right)
normal contact forces |N 21|, |N31| and friction contact forces |fr21| and |f r31|.
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Considering a Cartesian coordinate system (x, y) such that x (horizontal) positive axis
is aligned with the flow direction, the balance equations give the drag force fα

d in terms
of lift force fα

l , weight W and variables A and B (or its combination K, containing the
geometrical parameters of the Fig. 2 and the friction angle φ).

|fα
di| =

(|fα
li| − |W |)Ai

Bi
= (|fα

li| − |Wi|)Ki (1)

where i is a subscript that is equal to r for rolling, s for sliding and sc for the second case
of sliding special case. The initiation of motion occurs for the minimum value of the force
∣

∣fα
d−l

∣

∣=|fα
d + fα

l | of the three above equations.
Drag and lift forces are given by

|fα
d | =

Cα
d

2
SepρfV

α2

f , |fα
l | =

Cα
l

2
SepρfV

α2

f , (2)

where Cα
d and Cα

l are the drag and lift coefficients for an ellipsoid with inclination α,

respectively; Sep=
π

4
�

2
eq is the projected surface of the equivalent sphere of diameter

�eq=
6Ω

π

1/3

, where Ω =
4

3
πabc is the volume of the ellipsoid, and V α

f is the value of

mean velocity in the horizontal direction around the grain. To consider the particle in-
clination in the computation of the drag, we use, according to [5], a combination of the
drags for flow normal C0◦

d and for flow parallel C90◦

d to the mayor axis of the ellipsoidal
particle,

Cα
d = C0◦

d + (C90◦

d − C0◦

d ) sin3 α (3)

where:
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Re
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Re
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+
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Re
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0.4(− log Φ0.2)
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Φl .

(4)

Symbols Φ=Seq/S, Φl=Sep/(S/2−Slp), and Φc=Sep/Stp are the sphericity, the length-
wise sphericity, and the crosswise sphericity, respectively. The surface of the equivalent
sphere is given by Seq=π�

2
eq, S is the surface of the ellipsoid, calculated by the approxi-

mate formula of [4] S ≈ 4π((apbp+ apcp+ bpcp)/3)1/p where p=1.6075, and Slp=πac is the
surface obtained by the longitudinal projection of the surface of the ellipsoid. Stp=πbc is
the surface obtained by the transversal projection of the surface of the ellipsoid. According
to Ref. [5], lift coefficient is given by:

Cα
l = Cα

d sin2 α cosα . (5)

Values of Reynolds number in the drag and lift coefficients of Eqs. (4) are those corre-
sponding to the (volume equivalent) sphere, Re = ρfV

α
f �eq/ν, where ν is the dynamic

viscosity of the fluid.
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2.1 Velocity field and threshold stress

This subsection describes the computation of the mean velocity of the flow around an
ellipsoidal particle V α

f and the relation for critical threshold shear stress τ ⋆ as a function of
friction Reynolds number Re⋆ of a single particle, for different relations of proportionality
of the semi–axes f and inclinations α. The mean velocity is computed with the following

expression V α
f =

1

Sα
p

∫

Sα
p

u(y, z)dS ′. Where u(y, z) is the velocity of the flow at point y, z,

Sα
p = πbpy/2 is the area of a ellipse obtained as the projection of the inclined ellipsoid

on a plane perpendicular to the flow. Figure 3 depicts the geometrical meaning of py,
magnitude vertical axis of the ellipse defined as the distance between the two horizontal
tangents to the ellipsoid at the highest and lowest points, see also Fig. 4 for a detailed
representation of the flow around the ellipsoid.

py = 2(a cosφb sinα + b sinφb cosα) (6)

The relation for critical threshold shear stress τ ⋆ as a function of friction Reynolds number
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Figure 3: Vertical projection py, position of the virtual level δ and position δ⋆ of the bottom of the
particle respect to δ

Re⋆ of a single particle, requires the definition of Re⋆ = u⋆
�eq/ν (different of the particle

Reynolds number Re), where u⋆ =
√

τ/ρf is the friction velocity, and τ is the wall shear

stress. To determine threshold stress τ ⋆ = τ/((ρs − ρf)g�eq) = u⋆2ρf/((ρs − ρf )g�eq),
low friction Reynolds number regime and high friction Reynolds number regime must be
discriminated to calculate the corresponding drag and lift forces.

For low friction Reynolds number (about Re⋆<1), the flow is laminar and the velocity

distribution around the particle is linear u(y,z)
u⋆ = yu⋆

ν
(see left profile of Fig. 4), and the

mean velocity is:

V α
f =

1

Sα
p

∫ y=δ⋆+py

y=δ⋆

yu⋆2

ν
2z(y)dy =

pyu
⋆

ν
(7)
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where dS ′ = 2z(y)dy is the differential area of the projected ellipse and

z(y) =

√

b2
(

1− 4(y − py/2)
2

p2y

)

,

(see the right of Fig. 4 for details). The δ⋆ is the distance between the virtual level (zero
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Figure 4: Velocity distribution for low particle Reynolds number (left profile) and high Reynolds number
(intermediate and right profile).

velocity level) and the lowest point of the ellipsoid, while δ is the distance from the top
level of the bed of the particles to the virtual level and is obtained from the geometry
shown in Fig. 3.

For large particle friction Reynolds number (Re⋆ ≥ 30), the flow is turbulent and the
velocity distribution around the particle (middle and right profiles of Fig. 4) is

u(y, z)

u⋆
=

1

κ
log

y

y0
≈ 2.5 log

y

y0
,

where κ=0.41 is the von Karman constant and z0 is an equivalent bed roughness length
(usually taken as R/30 to R/10, where R is the radius of cylinders on the bottom bed [8]).
Mean velocity is computed as

V α
f =

1

Sα
p

∫

S′

u(y, z)dS ′ =
1

Sα
p

∫

S′

u⋆

κ
log

(

y

y0

)

dS ′ =
1

Sα
p

∫ y=δ⋆+py

y=ε

u⋆

κ
log

(

y

y0

)

2z(y)dy .

(8)
Depending on the location of the particle respect to the zero velocity level, the lower limit
of the integral is ε=y0 if δ⋆ < y0 or ε=δ⋆ if δ⋆ ≥ y0 (see middle and right profiles of
Fig. 4, respectively). The above integral has to be evaluated numerically since there is not
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an explicit analytical expression. By combining Eqs. (1) with Eqs. (2) values of V α
f that

initiates each kind of motion for laminar and turbulent regimes are given by

Cα
d

2
SepρfV

α 2
f = (|W | − Cα

l

2
SepρfV

α 2
f )Ki ; i = r, s, sc (9)

where Cα
d and Cα

l also depend on V α
f through Re. Finally, by inserting equation (7) into

(9) three non–linear equations yields to u⋆ for initiation of motion for rolling and slidings
in the laminar regime. Three additional equations are obtained for the turbulent regime
inserting Eq. (8) into Eq. (9). The whole set of six equations enables to compute u⋆ and
therefore the relation Re⋆–τ ⋆ for the three kind of motions and for the two regimes.

3 Discrete element method

The DEM is a numerical method suitable for simulating the interaction among particles
by frictional contacts. The non–penetration condition between particles i and k is imposed
by a gap function gikN (X) =

[

X − Y (X)
]

nik ≥ 0 that measures the minimum distance
between the contours of the particles. The points X, Y define the coordinates of the set
of points belonging to i and k respectively, that are either in contact, or in the closest
position to the opposite body, and nik=−nki is the normal unit vector at contact point
(see Fig. 5). The aforementioned points and vector for ellipsoidal and spherical particles
are obtained following the procedure of Ref. [9]. To describe the motion of contact points
in the tangential direction it is necessary to add a kinematic condition by introducing the
tangential gap gikT as follows, gikT (X) =

[

X + ǫi(X) − Y (X) − ǫk
(

Y (X)
)]

tik , where
ǫi(X) and ǫk

(

Y (X)
)

are the displacements of the contact points defined as X in body
i and Y (X) in body k, respectively. The displacements correspond to a time increment
∆t and tik is the tangential unit vector at contact point (see Fig. 5).

To prescribe non–penetration dinamically the method imposes contact force defined as

f ik
c = |N ik| nik + |f r ik| tik ,

where Nik and fr ik are the components of contact force in normal and tangential direction.
In case of two rigid rounded bodies, contact force is applied at a single point. The
contact force is modeled by penalization techniques (e.g. [6] and references therein). The
key idea is to introduce two parameters, denoted as KN and KT , representing two high
stiffness elastic springs placed between the contact points of the bodies along normal
and along tangential directions respectively (see right Fig. 5). Hence, contact forces are:
|N ik| = KNg

ik
N and |f r ik| = KTg

ik
T (rolling), or |N ik| = KNg

ik
N and |f r ik| = µ |N ik|

(sliding).
Governing equations of a set of nbd interacting bodies are formulated by Hamiltonian

mechanics and are numerically solved by the discrete element method. The formulation
results in the following equations of motion for each body:

Q̇
i
=

P i

ρsol
; Ṗ

i
= −∇V

(

Qi
)

; i = 1, . . . , nbd, (10)
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Figure 5: Left: Contact between two bodies. Right: gikN defines the maximum penetration, gikT defines
the tangential displacement.

where Qi(x, y, t) is the position of the particle i, P i(x, y, t) is the linear momentum of the
particle i. We approximate Eqs. (10) by a discrete representation of displacements (x,y
displacements and rotation) and linear momentum (x, y and angular momentum) with
first order nodal shape functions contained in the 2×3 matrix N i(x, y) such that for each
body i,

Qi = N iqi; P i = N ipi . (11)

Here qi and pi are values of displacements and momenta at the centroid of the particle.
By replacing the discretization given by Eqs. (11) into Eqs. (10), we accomplish:

q̇ = M−1p ; ṗ = f c + fd + f l +W , (12)

whereM is the assembled lumped mass matrix. Time integration of Eqs. (12) is performed
by an implicit one step algorithm proposed in [2].

4 Experiments

A set of simulations are conducted for a single ellipsoidal inclined particle of non–
cohesive sediment resting in an horizontal bed to obtain the relation between Re⋆ and
τ ⋆. The beds are composed of fixed cylinders of the same radius as the semiaxis a of the
ellipse. The analytical and numerical computations are compared with the experimental
results and are defined taking into account the non full sphericity of the grains.

4.1 Incipient motion

Both numerical and analytical experiments consider the configuration depicted in Fig. 1
(right). To restrict the motion of the particles on the bottom in the numerical compu-
tation, a high friction coefficient is imposed by the lateral boundaries. We assume that
evolution of particles on the bottom do not modify substantially the velocity field. Pa-
rameters for the particles and flow are: density of the particles ρsol=2500 kg/m3, particle
friction angle φ=15◦, friction between particles and lateral boundaries φ=40◦, density of
flow ρf=1 kg/m3 (air), kinematic viscosity ν=10−5m2/s, and g=9.81 m/s2. The relation
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Re⋆ − τ ⋆ is obtained by solving the succesive scaling of the model (Fig. 1), ranging from
laminar to turbulent regimes. We compute a value of u⋆ and then Re⋆, τ ⋆, for each scale.
For DEM, the Re⋆, τ ⋆ relationship is also obtained by scaling the set of particles and by
gradually increasing the flow. Computation of the evolution of particles by the DEM as-
sumes that motion occurs once particle overpasses the particle located on the bottom right.
In case that this limit is not reached, u⋆ is progressively increased. Same procedure is re-
peated for sets of particles of different size. The numerical parameters for DEM are: time
increment for integration of Eqs. (12) is ∆t=0.0025 s, andKN=KT=106 N/m. A minimum
value of the large semiaxis is a=5×10−5m is adopted to avoid ill–conditioning problems.
To simulate very small Re⋆ conditions, fluid viscosity is augmented (ν=10−3m2/s).

Figures 6 to 8 show the relation Re⋆ − τ ⋆ (Shields diagram) for f = 1.0, 0.75 and
0.5, and inclinations α = 0, 15, 35◦. In the figures two regions can be clearly identified,
the low particle friction Reynolds number region (left), and the high particle friction
Reynolds number region (right). Between both regions, a range defined approximately as
4<Re⋆<30 specifies a transition, where the representation of drag and lift given by Eq. (2)
is not adequate. For very low friction Reynolds numbers (Re⋆<1) the stress decreases as
the Re⋆ increases, and the force exerted by the flow also increases due to the viscosity
forces. The opposite case is for high Re⋆ range, where the pressure force is higher than
viscous force and initiation of motion requires a higher stress.

In general, a variation in α and f produces a substantial variation in the stress. For
α = 0◦ (Fig. 6) the particle is exposing the minimum area to the action of the flow and
consequently it is expected the highest stress. For f = 1 (sphere), the motion is by rolling
since it corresponds to the lowest stress. As f decreases, the mode of motion changes
from rolling to sliding. Notice that for f = 0.75 the stress for the three kinds of motion
coincides. For f < 0.75, stress to produce motion by rolling increases and stress for
sliding decreases, since the mechanical arm of the particle decreases as f decreases (see
the right Fig. 6). Therefore, the force induced by the flow is lower to produce sliding than
to produce the moment to roll the particle. For the laminar range the stress decreases
for f = 0.50, due to the low weight of the particle that reduces the resistant force of the
motion.

DEM reproduces the analytical results. Notice that the numerical results do not always
correspond to the lowest stress. Figures 6 to 8 right show that motion computed by DEM
is produced by the intermediate stress, that corresponds to sliding where the particle has
only one contact (special case). Experimental and numerical results frequently show that
initiation of motion is produced while one contact is maintained. Numerical and analytical
results fit well with the experimental limits [7], for spherical particles or particles with
f = 0.75 for all inclinations. For f = 0.50 the numerical results are within or closer to
the experimental limits for α = 35◦.
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Figure 6: Re⋆, τ⋆ relation for α = 0◦ and f = 1.0, 0.75, 0.50, left to right respectively.

Re⋆

τ
⋆

1000100101

0.1

0.01

Re⋆
1000100101

Re⋆
1000100101

Figure 7: Re⋆, τ⋆ relation for α = 15◦ and f = 1.0, 0.75, 0.50, left to right respectively.
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Figure 8: Re⋆, τ⋆ relation for α = 35◦ and f = 1.0, 0.75, 0.50, left to right respectively.
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5 Conclusions

The initiation of motion of an ellipsoidal particle that rests on a sediment bed has been
analyzed using new analytical and numerical (DEM) approaches. The new approaches
consider a variety of shapes and orientations that previous formulations do not take into
account. Results show good agreement with the experimental results given by Shields,
particularly with the dispersion of lab results, where a wide shape variation exists. Ex-
tension for non–horizontal beds of this work is currently developed by the authors and
will be pursued and reported in future publications.
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