

Enhanced Non-Uniform Transformation Field Analysis

Akanksha Mishra^{1*}, Pietro Carrara¹, Sonia Marfia², Elio Sacco³ and Laura De Lorenzis¹

¹ ETH Zurich, Tannenstrasse 3, 8092 Zurich, Switzerland, {amishra, pcarrara, ldelorenzis}@ethz.ch

² University of Roma Tre, Via Vito Volterra, 62, 00146 Rome, Italy,
sonia.marfia@uniroma3.it

³ University of Naples Federico II, Via Claudio, 21 - 80125 - Naples, Italy,
elio.sacco@unina.it

Keywords: *NTFA, multi-scale analysis, homogenization, reduced order modeling*

We propose an extension of Non-Uniform Transformation Field Analysis (NTFA) [1] to address modeling of heterogeneous materials undergoing debonding. We denote the proposed method as Enhanced Non-uniform Transformation Field Analysis (ENTFA). Departing from the NTFA-based homogenization proposed in [2], we enhance it by introducing a consistent tangent matrix, and we formulate the enhanced approach for both single and multi-scale analyses. In the multi-scale setting, we adopt a suitable representative volume element of the micro-scale and model debonding with cohesive interfaces obeying the interface law in [3]. As in [2], the interfaces are partitioned into sub-interfaces, and the inelastic relative displacement field within each sub-interface is approximated by piecewise linear functions. This allows the inelastic relative displacements to be represented using reduced inelastic variables, which are solved for through a Newton-Raphson iterative approach based on the obtained consistent tangent matrix. This not only facilitates the derivation of the homogenized stress-strain constitutive relation at the macro-scale, but also allows to robustly trace complex snap-back phenomena in single-scale analyses by the application of an arc-length control technique. Several numerical tests demonstrate that ENTFA leads to a significant reduction of the computational time over reference non-linear finite element analyses, while retaining a satisfactory accuracy.

REFERENCES

- [1] J.C. Michel and P. Suquet, Nonuniform transformation field analysis. *Int. J. Solids Struct.*, Vol. **40**, pp. 6937–6955, 2003.
- [2] S. Marfia and E. Sacco, Computational homogenization of composites experiencing plasticity, cracking and debonding phenomena. *Comput. Methods Appl. Mech. Engrg.*, Vol. **304**, pp.319–341, 2016.
- [3] G. Alfano and E. Sacco, Combining interface damage and friction in a cohesive-zone model. *Int. J. Numer. Methods Eng.*, Vol. **68**, pp.542–582, 2006.