

Goal-oriented adaptive MLMC for elliptic random PDEs

Joakim Beck^{1,2}, Yang Liu^{1,2,*}, Erik von Schwerin^{1,2}, and Raúl Tempone^{1,2,3}

¹ Computer, Electrical and Mathematical Sciences and Engineering,
4700 King Abdullah University of Science and Technology (KAUST),
Thuwal 23955-6900, Kingdom of Saudi Arabia.

² KAUST SRI Center for Uncertainty Quantification in Computational Science and
Engineering

³ Alexander von Humboldt Professor in Mathematics for Uncertainty Quantification,
RWTH Aachen University, 52062 Aachen, Germany.

Keywords: *Goal-oriented adaptivity, MLMC, Matérn random fields, elliptic random PDE*

Multilevel Monte Carlo methods (MLMC) can dramatically reduce the computational cost of Monte Carlo simulations where each sample is computed using a discretization based numerical method, for example, when computing the expected value of a quantity of interest (QoI) depending on the solution to a partial differential equation with stochastic data.

Goal-oriented adaptive finite element refines the mesh based on the error contribution to the QoI. This is efficient, for instance, when the geometry presents a singularity, such as a non-convex domain.

The purpose of this work is to combine MLMC and adaptive finite element solvers, to efficiently solve a boundary-value problem of an elliptic partial differential equation with random coefficients on a non-convex domain. The QoI is a linear functional of the PDE solution, and the coefficient field is efficiently sampled from a regular coefficient random field. The adaptive refinement algorithm is based on [1]. This work can also be seen as an extension of [2].

REFERENCES

- [1] Moon, Kyoung-Sook., Erik von Schwerin, Anders Szepessy, and Raúl Tempone. "Convergence rates for an adaptive dual weighted residual finite element algorithm." *BIT Numerical Mathematics* 46, no. 2 (2006): 367-407.
- [2] Hoel, Håkon, Erik von Schwerin, Anders Szepessy, and Raúl Tempone. "Implementation and analysis of an adaptive multilevel Monte Carlo algorithm." *Monte Carlo Methods and Applications* 20, no. 1 (2014): 1-41.