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Identifying the stall behaviour of airfoils is crucial for many engineering applications, in-
cluding the design of aircraft lifting surfaces, wind and hydrokinetric turbines, helicopter
rotors and turbomachinery blades. To do so numerically, however, remains a challenging
task. Whilst Reynolds-Averaged Navier-Stokes (RANS) methods may provide reasonably
accurate gross flow characteristics [5], turbulence models exhibit deficiencies when ap-
plied to massively separated flows [6], and they are of limited use for exploring viscous
flow mechanisms in detail [8]. Scale-resolved methods enable a higher fidelity analysis
than RANS, and thus a deeper understanding of the underlying flow mechanisms. Good
matches with experimental data for the dynamic stall of a NACA-0012 wing at Reynolds
numbers to the order of 105 have recently been achieved by Kim et al. [3], Ouro et al.
[7], and Visbal et al. [8], using Navier-Stokes based methods.

The Lattice Boltzmann Method (LBM) is an emerging alternative to Navier-Stokes based
methods, with promising accuracy and scalability. Recent advancements [1] have greatly
improved stability in the higher Reynolds regime (O(105)). To the authors’ knowledge,
no analysis of stall at these conditions using LBM has yet been presented. The aim of
this study is to apply an advanced LBM to analyse the static stall of a blade with a
sharp leading edge. This geometry is considered an important stepping stone to axial
compressor blades, the detailed analysis of which is the long-term goal of this work.
An in-house LBM code based on the open-source code OpenLB [4], and extended to
include localised grid refinement [9], is used. Firstly, force coefficients and chordwise
pressure coefficient distributions obtained from the LBM simulations are compared against
reference experimental and numerical data. Next, we proceed to investigate the detailed
flow mechanisms preceding stall, by both qualitative and quantitative means. The ability
to do so thoroughly is the important advantage of scale-resolved methods compared to
methods of lower fidelity such as RANS.

A preliminary result of static stall analysis is presented in Fig. 1, in which contours



2

of unsteady velocity magnitude and spanwise vorticity at the mid-span of the blade are
shown. As expected, the boundary layer remains attached at zero angle of attack, with a
clear von Karman vortex sheet emanating from the trailing edge. At 8o angle of attack we
observe a laminar separation directly at the leading edge, followed by a small separation
bubble and a turbulent reattachment to the upper surface. This agrees with the expected
development of a ’thin-airfoil stall’, as described in literature [2, 6]. At 16o the region of
separated flow covers the entire chord, indicating a full stall. The remaining simulations
at intermediate angles of attack that are underway will enable us to explore in more detail
the progression of the stall, such as the expected rearward expansion of the separation
bubble, followed by total separation of the upper surface flow.

This study demonstrates the suitability of the Lattice Boltzmann Method for efficient
scale-resolved modelling of aerofoil stall at Reynolds numbers to the order of 105, and
serves as a significant intermediate step to static stall investigation of axial compressor
blades. Future work will also involve investigation of the dynamic stall of these blades,
as the LBM includes the capability for large-scale unsteady geometric deformations.
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Figure 1: Velocity magnitude (left) and spanwise vorticity (right) contours at blade mid-
span.
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