

ANALYSIS AND APPROXIMATION OF MIXED-DIMENSIONAL PDES ON 3D-1D DOMAINS COUPLED WITH LAGRANGE MULTIPLIERS

L. Heltai¹, M. Kuchta², K.A. Mardal^{2,3}, P. Zunino⁴

¹ Mathematics, Scuola Internazionale Superiore di Studi Avanzati di Trieste

² Simula Research Laboratory, Barum, Norway

³ Universitetet i Oslo, Oslo, Norway

⁴MOX, Department of Mathematics, Politecnico di Milano

Key Words: *mixed-dimensional PDEs, Lagrange Multipliers, finite element approximation*

Coupled partial differential equations (PDEs) defined on domains with different dimensionality are usually called mixed-dimensional PDEs. We address mixed-dimensional PDEs on three-dimensional (3D) and one-dimensional (1D) domains, which gives rise to a 3D-1D coupled problem.

Such a problem poses several challenges from the standpoint of existence of solutions and numerical approximation, see for example [1]. For the coupling conditions across dimensions, we consider the combination of essential and natural conditions, which are basically the combination of Dirichlet and Neumann conditions. To ensure a meaningful formulation of such conditions, we use the Lagrange multiplier method suitably adapted to the mixed-dimensional case [2]. The well-posedness of the resulting saddle-point problem is analyzed.

Then, we address the numerical approximation of the problem in the framework of the finite element method. The discretization of the Lagrange multiplier space is the main challenge. Several options are proposed, analyzed, and compared, with the purpose of determining a good balance between the mathematical properties of the discrete problem and flexibility of implementation of the numerical scheme. The results are supported by evidence based on numerical experiments. The application of this technique to microcirculation [3,4], the modeling of reinforced materials [5] and subsurface wells will be discussed.

REFERENCES

- [1] Laurino, F., Zunino, P. Derivation and analysis of coupled PDEs on manifolds with high dimensionality gap arising from topological model reduction (2019) *ESAIM: Mathematical Modelling and Numerical Analysis*, 53 (6), pp. 2047-2080.
- [2] Kuchta, M., Laurino, F., Mardal, K.-A., Zunino, P. Analysis and approximation of mixed-dimensional PDEs on 3D-1D domains coupled with lagrange multipliers (2021) *SIAM Journal on Numerical Analysis*, 59 (1), pp. 558-582.
- [3] Heltai, L., Caiazzo, A., Müller, L.O. Multiscale Coupling of One-dimensional Vascular Models and Elastic Tissues (2021) *Annals of Biomedical Engineering*, .
- [4] Possenti, L., Cicchetti, A., Rosati, R., Cerroni, D., Costantino, M.L., Rancati, T., Zunino, P. *A Mesoscale Computational Model for Microvascular Oxygen Transfer*, *Annals of Biomedical Engineering* (2021).
- [5] Alzetta, G., Heltai, L. Multiscale modeling of fiber reinforced materials via non-matching immersed methods (2020) *Computers and Structures*, 239, art. no. 106334, .