

LARGE SCALE COMPUTATIONAL HOMOGENIZATION USING THE FE² METHOD FOR CONTACT PROBLEMS

Axel Klawonn^{1,2}, Martin Lancer^{1,2}, Oliver Rheinbach³, and Matthias Uran^{1,2}

¹ Department of Mathematics and Computer Science, University of Cologne, Weyertal 86-90,
50931 Köln, Germany, {axel.klawonn,martin.lancer}@uni-koeln.de,
<https://www.numerik.uni-koeln.de>

² Center for Data and Simulation Science, University of Cologne, Germany,
<https://www.cds.uni-koeln.de>

³ Institut für Numerische Mathematik und Optimierung, Technische Universität Bergakademie
Freiberg, Akademiestr. 6, 09599 Freiberg, Germany, oliver.rheinbach@math.tu-freiberg.de,
<https://tu-freiberg.de/fakult1/nmo/rheinbach>

Key Words: *Computational Homogenization, FE², Domain Decomposition Methods, BDDC, Parallel Computing, Nakajima Test, FLC, Contact*

Advanced High Strength Steels (AHSS) provide a good combination of both strength and formability and are therefore applied extensively in the automotive industry, especially in the crash relevant parts of the vehicle. Dual-phase (DP) steel is an example for such an AHSS, which is widely employed. The excellent macroscopic behavior of this steel is a result of the inherent micro-heterogeneity and complex interactions between the ferritic and martensitic phases in the microstructure. Thus, considering the microscale is indispensable for realistic simulations. This can be accomplished efficiently using the homogenization approach FE².

We present our software package FE2TI, which combines a highly scalable implementation of the FE² approach with FETI-DP (Finite Element Tearing and Interconnecting - Dual Primal) methods, i.e., scalable implicit finite element solvers based on a domain decomposition approach. On a macroscopic level, a contact implementation enables realistic simulations of deformation processes of dual-phase steels. Large contact simulations as well as parallel scalability to more than 1 million MPI ranks are presented. We also use FE2TI to perform the Nakajima test for a dual-phase steel in silico, considering the microscopic structure of the material. The Nakajima test is a well-known experimental test to compute an FLC (Forming Limit Curve), which is used to evaluate the strength and ductility of a material. The large-scale contact simulations for the virtual Nakajima test have been performed on the JUWELS supercomputer (Forschungszentrum Jülich, Germany). The finally obtained virtual FLC is presented and discussed in this talk.

REFERENCES

- [1] A. Klawonn, S. Köhler, M. Lancer, and O. Rheinbach, *Computational homogenization with million-way parallelism using domain decomposition methods*, Comput. Mech. 65, no.1, pages 1-22, 2020.
- [2] A. Klawonn, M. Lancer, O. Rheinbach, and M. Uran, *Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization*, Comput. Mech. 68, no.5, pages 1153-1178, 2021.