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This work describes how machine learning may be used to develop accurate and efficient
nonlinear dynamical systems models for complex natural and engineered systems. We
explore the sparse identification of nonlinear dynamics (SINDy) algorithm, which identi-
fies a minimal dynamical system model that balances model complexity with accuracy,
avoiding overfitting. This approach tends to promote models that are interpretable and
generalizable, capturing the essential “physics” of the system. We also discuss the impor-
tance of learning effective coordinate systems in which the dynamics may be expected to
be sparse. These coordinate systems are typically learned within the framework of a deep
neural network autoencoder. Such autoencoders may also be used to learn coordinate
systems where the dynamics become linear, related to Koopman operator theory. We
will demonstrate this learning approach on a range of challenging modeling problems in
fluid dynamics, and we will discuss how to incorporate these models into existing model-
based control efforts. Because fluid dynamics is central to transportation, health, and
defense systems, we will emphasize the importance of machine learning solutions that are
interpretable, explainable, generalizable, and that respect known physics.
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