

An atomistic-to-continuum coupling method for fracture simulations of amorphous polymers

Wuyang Zhao^{*1}, Paul Steinmann^{1,2} and Sebastian Pfaller¹

¹ Institute of Applied Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg,
Egerlandstr. 5, 91058, Erlangen, Germany

² Glasgow Computational Engineering Centre, University of Glasgow, United Kingdom
(wuyang.zhao@fau.de, paul.steinmann@fau.de, sebastian.pfaller@fau.de)

Keywords: *Multiscale Simulations, Fracture, Polymers, Molecular Dynamics*

In this contribution, we present a concurrent atomistic-to-continuum coupling method for fracture simulations of amorphous polymers. This method is based on the Capriccio method [1], which couples a particle domain resolved by molecular dynamics (MD) simulations and a continuum domain described by Finite Element (FE) method. Recently, it was extended to inelasticity [2] by employing an inelastic constitutive model [3] in the FE domain.

Since fracture of materials is usually a problem that has to consider fine-scale processes at molecular or atomistic resolution in the vicinity of the crack tip, but is subject to macroscopic boundary conditions, an atomistic-to-continuum coupling method is appropriate for adequate simulations of fracture. To this end, we further develop the inelastic Capriccio method for multi-scale simulations of polymer fracture by embedding an MD domain with a pre-crack into a continuum domain with a notch. The MD domain can then be deformed in a non-affine way by prescribing the boundary conditions of the FE domain. Using this method, we conducted Mode-I deformation of amorphous glassy polystyrene under isothermal condition to study the crack behavior of the MD domain.

REFERENCES

- [1] S. Pfaller, M. Rahimi, G. Possart, P. Steinmann, F. Müller-Plathe and M. Böhm, An Arlequin-based method to couple molecular dynamics and finite element simulations of amorphous polymers and nanocomposites. *Comput Methods Appl Mech Eng*, Vol. **260**, pp. 109–129, 2013.
- [2] W. Zhao, P. Steinmann and S. Pfaller, A particle-continuum coupling method for multiscale simulations of viscoelastic-viscoplastic amorphous glassy polymers. *Int J Numer Methods Eng*, Vol. **122**, pp. 7431–7451, 2021.
- [3] W. Zhao, M. Ries, P. Steinmann and S. Pfaller, A viscoelastic-viscoplastic constitutive model for glassy polymers informed by molecular dynamics simulations. *Int J Solids Struct*, Vol. **226-227**, pp. 111071, 2021.