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Modeling real-world phenomena to any degree of accuracy is a challenge that the scientific 
research community has navigated since its foundation. Insufficient knowledge, such as 
inability to observe or represent all the relevant phenomena, induces uncertainty in the 
appropriate model form. Characterizing this model-form uncertainty (MFU) is essential to 
understanding the reliability of predictions made with these models, especially when such 
predictions inform high-consequence decisions. Here we present a novel model-form 
uncertainty representation which combines Bayesian statistics with Universal Differential 
Equations [1], a powerful new approach to data-driven modeling wherein a universal function 
approximator (a neural network in this work) is embedded within a known differential-
equation model at the source of MFU. The neural network is endowed with a probabilistic 
representation and is updated using available observational data in a Bayesian framework. By 
representing the MFU explicitly and deploying an embedded, data-driven model, this 
approach enables an agile, expressive, and interpretable method for representing MFU.  
 
*Sandia National Laboratories is a multimission laboratory managed and operated by 
National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of 
Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security 
Administration under contract DE-NA0003525. 
 

REFERENCES 
[1] Rackauckas, Christopher, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, 

Rohit Supekar, Dominic Skinner, Ali Ramadhan, and Alan Edelman. “Universal 
Differential Equations for Scientific Machine Learning.” ArXiv Preprint 
ArXiv:2001.04385, 2020. https://arxiv.org/abs/2001.04385. 

 
 


