

Data-Driven Model-Form Uncertainty with Bayesian Statistics and Neural Differential Equations

Teresa Portone¹, Erin Acuesta², Christopher Rackauckas³, and Raj Dandekar⁴

¹ Sandia National Laboratories, 1515 Eubank SE, Albuquerque, NM 87123, USA, tporton@sandia.gov

² Sandia National Laboratories, 1515 Eubank SE, Albuquerque, NM 87123, USA,
eacques@sandia.gov

³ Department of Mathematics, Massachusetts Institute of Technology, Cambridge, 02139,
Massachusetts, United States, crackauc@mit.edu

³ Department of Computational Science and Engineering, Massachusetts Institute of Technology,
Cambridge, 02139, Massachusetts, United States, rajd@mit.edu

Key Words: *Model form error, Model inadequacy, Model discrepancy, Model-form uncertainty, Data-driven, Neural networks.*

Modeling real-world phenomena to any degree of accuracy is a challenge that the scientific research community has navigated since its foundation. Insufficient knowledge, such as inability to observe or represent all the relevant phenomena, induces uncertainty in the appropriate model form. Characterizing this model-form uncertainty (MFU) is essential to understanding the reliability of predictions made with these models, especially when such predictions inform high-consequence decisions. Here we present a novel model-form uncertainty representation which combines Bayesian statistics with Universal Differential Equations [1], a powerful new approach to data-driven modeling wherein a universal function approximator (a neural network in this work) is embedded within a known differential-equation model at the source of MFU. The neural network is endowed with a probabilistic representation and is updated using available observational data in a Bayesian framework. By representing the MFU explicitly and deploying an embedded, data-driven model, this approach enables an agile, expressive, and interpretable method for representing MFU.

*Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

REFERENCES

- [1] Rackauckas, Christopher, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar, Dominic Skinner, Ali Ramadhan, and Alan Edelman. “Universal Differential Equations for Scientific Machine Learning.” *ArXiv Preprint ArXiv:2001.04385*, 2020. <https://arxiv.org/abs/2001.04385>.