

Generalized gradient flow structure of the Cahn-Hilliard-Biot model

Erlend Storvik*, Jakub W. Both, Jan M. Nordbotten and Florin A. Radu

University of Bergen, Allégaten 41, 5007 Bergen, {erlend.storvik, jakub.both, jan.nordbotten, florin.radu}@uib.no

Keywords: *Phase-field, Cahn-Hilliard, Poromechanics, Generalized gradient flow*

In this work, we present a model for single-phase flow through a two-phase deformable porous material where the solid phases are evolving and have different material properties [1]. The phase evolution of the system is governed by Landau theory and is closely related to the Cahn-Hilliard equation and the location of the solid phases are tracked by a phase-field function. The coupling of flow and deformation is governed by Biot's theory and the model can be seen as an extension of the Cahn-Larché equations which couples elasticity with the Cahn-Hilliard equation. There exist several applications of two-phase deformable porous materials that undergo phase-changes, and we mention specifically tumor growth where the two phases consist of cancerous and healthy cells and wood growth where heartwood and sapwood form the two evolving phases.

We show that this model has a generalized gradient flow structure, and therefore, is inherently thermodynamically consistent. Moreover, the generalized gradient flow structure is used to develop solution strategies for the nonlinear coupled system of equations, by taking inspiration from [2]. Furthermore, we build on the knowledge from [3, 4, 5] to tune and accelerate the convergence of the nonlinear- and decoupling solvers. Finally, we show numerical examples where we compare the solid phase evolution with and without flow through the medium with different material parameters and highlight the performance of the numerical solution algorithms.

REFERENCES

- [1] E. Storvik, J.W. Both, J.M. Nordbotten and F.A. Radu, A Cahn-Hilliard-Biot system and its generalized gradient flow structure, *Applied Mathematics Letters*. 2021.
- [2] J.W. Both, K. Kumar, J.M. Nordbotten, F.A. Radu, The gradient flow structures of thermo-poro-visco-elastic processes in porous media, *arXiv:1907.03134*. 2019.
- [3] E. Storvik, J.W. Both, J.M. Sargado, J.M. Nordbotten, F.A. Radu, An accelerated staggered scheme for variational phase-field models of brittle fracture, *Comput Methods Appl Mech Eng*. 2021.
- [4] M.K. Brun, T. Wick, I. Berre, J.M. Nordbotten and F.A. Radu, An iterative staggered scheme for phase field brittle fracture propagation with stabilizing parameters, *Comput Methods Appl Mech Eng*. 2020.
- [5] E. Storvik, J.W. Both, K. Kumar, J.M. Nordbotten, F.A. Radu, On the optimization of the fixed-stress splitting for Biot's equations, *Int J Numer Methods Eng*. 2019.