

Reduced order models for the solution of geometrically-parametrised turbulent flow problems.

Vasileios Tsiolakis^{1*}, Trond Kvamsdal^{1,2}, Adil Rasheed^{2,3},
Eivind Fonn² and Harald van Brummelen⁴

¹ Department of Mathematical Sciences, Norwegian University of Science and
Technology, Trondheim, Norway

² Department of Mathematics and Cybernetics, SINTEF Digital, Trondheim Norway

³ Department of Engineering Cybernetics, Norwegian University of Science and
Technology, Trondheim, Norway

⁴ Department of Mechanical Engineering, Eindhoven University of Technology,
Eindhoven, Netherlands

Keywords: *Reduced Order Models, CFD, Turbulence, Industrial Applications*

The solution of flow problems in industrial applications often results in large systems, further exaggerated in the case of parametrised problems. Such problems can prove cumbersome to conventional, or high-fidelity, techniques. However, reduced order models (ROM) offer an efficient alternative, greatly reducing the computational complexity of the underlying problem. This work explores the applicability of a hybrid ROM strategy for the solution of geometrically-parametrised flow problems in an industrially-relevant setting, paying close attention to the handling of the geometric parametrisation contributions in the online phase.

The methodology combines data-driven and projection-based techniques. The reduced basis is constructed by means of the proper orthogonal decomposition (POD), and the Galerkin projection of the Navier-Stokes problem for the evaluation of the parametric coefficients. On the other hand, the eddy viscosity, and in effect the turbulent contribution is approximated via an interpolation scheme, i.e. POD-I, significantly improving the versatility of the methodology.

Finally, the capabilities of the proposed strategy are tested by approximating the turbulent flow around a NACA aerofoil with parametrised angle of attack, expanding the work presented in [1] to turbulent problems.

REFERENCES

[1] E. Fonn, H. van Brummelen, T. Kvamsdal, and A. Rasheed, Fast divergence-conforming reduced basis methods for steady Navier–Stokes flow. *Computer Methods in Applied Mechanics and Engineering*, Volume 346, Pages 486-512, 2019