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By now, simulations have become a very important tool in engineering sciences. How-
ever, when applied to engineering problems, they often require large amounts of compu-
tation time — even on modern supercomputers. This motivates the growing interest in
model order reduction techniques, which approximate full order models at much lower
computational costs by drastically reducing the degrees of freedom. Here, the recent
break-throughs of deep-learning approaches have drawn the attention towards data-based
strategies for constructing reduced models, utilizing, e.g., supervised learning concepts.

While supervised learning algorithms work well for a wide variety of tasks including image
recognition and language processing, they often require lots of data — which is mostly
sparse in engineering applications — and typically do not include a-priori information
about the underlying process — which however is often available. Physics-Informed Neural
Networks (PINNs) [1] try to bridge the gap between purely data-driven supervised learning
and traditional physics-based modeling by integrating this a-priori knowledge in the form
of the governing equations into the learning process.

We aim to employ PINNs as reduced simulation models for predicting the flow field inside
bioreactors as well as the crystallisation of polymers. While the first application case is
especially challenging regarding the geometry of the reactors and the necessary boundary
conditions to precisely model the relevant flow phenomena, the second application case
involves complex physical models that govern the dynamics of the crystallisation process.
The presented results will show that PINNs qualify as reduced simulation models for
complex engineering applications.
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