

An h-multigrid method for Hybrid High-Order discretizations

**Daniele A. Di Pietro¹, Frank Hülsemann², Pierre Matalon^{*3}, Paul Mycek⁴, Ulrich Rüde⁵
and Daniel Ruiz⁶**

¹ IMAG, Univ. Montpellier, Place Eugène Bataillon, 34090 Montpellier, France, daniele.di-pietro@umontpellier.fr

² EDF Lab, bd G. Monge, 91120 Palaiseau, France, frank.hulsemann@edf.fr

³ MOX, Politecnico di Milano, Via Bonardi 9, 20133 Milano, Italy, pierre.matalon@polimi.it

⁴ CERFACS, 42 av. G. Coriolis, 31100 Toulouse, France, mycek@cerfacs.fr

⁵ FAU Erlangen-Nürnberg, Cauerstrasse 11, ulrich.rude@fau.de

⁶ IRIT-ENSEEIHT, 2 rue C. Camichel, 31000 Toulouse, France, daniel.ruiz@inp-toulouse.fr

Key Words: *Partial Differential Equations, Hybrid High-Order, Multigrid, Static condensation.*

We consider a second order elliptic PDE discretized by the Hybrid High-Order method, for which globally coupled unknowns are located at faces. To efficiently solve the resulting linear system, we propose a geometric multigrid algorithm that keeps the degrees of freedom on the faces at every grid level. The core of the algorithm lies in the design of the prolongation operator that passes information from coarse to fine faces through the reconstruction of an intermediary polynomial of higher degree on the cells. High orders are natively handled by the use of the same polynomial degree at every grid level. The proposed algorithm requires a hierarchy of polyhedral meshes such that the faces (and not only the elements) are successively coarsened. Numerical tests on homogeneous and heterogeneous diffusion problems show fast convergence, asymptotic optimality with respect to the mesh size, robustness to the polynomial order, and robustness with respect to heterogeneity of the diffusion coefficient.

REFERENCES

- [1] D. A. Di Pietro, F. Hülsemann, P. Matalon, P. Mycek, U. Rüde, D. Ruiz, An h-multigrid method for Hybrid High-Order discretizations. *SIAM J. Sci. Comput.*, Vol. **43**(5), pp. S839-S861, 2021.
- [2] D. A. Di Pietro, J. Droniou, *The Hybrid High-Order method for polytopal meshes. Design, analysis and applications*, No 19 in Modeling, Simulation and Application. Springer International Publishing, 2020.