

IMAGE-INFORMED BIOMECHANICAL MODEL FOR GLIOBLASTOMA GROWTH: A COMBINED DESCRIPTIVE AND PREDICTIVE MODEL

Meryem Abbad Andaloussi^{1,2}, Andreas Husch¹, Frank Hertel^{1,3}, Stéphane Urcun² and Stéphane P.A. Bordas²

¹ Interventional Neuroscience Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 avenue du Swing, L-4367 Belvaux, Luxembourg, meryem.abbad_andaloussi@ensam.eu, andreas.husch@uni.lu
https://uni.lu/lcsb/research/interventional_neuroscience

² Institute for Computational Engineering Sciences, Department of Engineering Sciences, Faculty for Science, Technology and Medicine, University of Luxembourg, 2 avenue de l'Université L-4365 Esch-sur-Alzette, stephane.urcun@ensam.eu, stephane.bordas@uni.lu <https://wwwen.uni.lu/>

³ National Department of Neurosurgery, Centre Hospitalier de Luxembourg, 4 Rue Ernest Barble, Luxembourg City, Luxembourg, hertel.frank@chl.lu

Keywords: *Glioblastoma, Tumor Growth, Medical Imaging, Deep Learning, Image Segmentation, Patient-specific Modelling*

Despite the different range of treatment available such as surgery, radio and chemo therapy, glioblastoma multiforme (GBM) is one of the most complex to treat [1]. It is classified as a grade 4 tumor by the WHO and carries a poor prognosis and high recurrence propensity. Providing clinicians with an accurate model that predicts the anisotropic tumor growth is essential to apply the most adequate treatment for the patient. In that scope, the large variety of medical images (contrast enhanced and diffusion weighted MRI [2]), of every patient constitutes a strong basis. Thanks to image analysis techniques multiple parameters such as the geometry and initial conditions can be extracted to initialize a clinically relevant tumor growth model. Accurately defining the initial state of the tumor is of major importance and reducing the errors in image segmentation is a key step into providing an accurate growth model. In this work, we apply an automated self configuring deep learning-based segmentation method (nnU-Net) to GBM patients MRIs [3]. The initial tumor geometry obtained from the segmented image will then be integrated into the growth model. Both the global trend of glioblastoma evolution and the patient-specific characteristics will be involved. The goal is to gather the best of both descriptive and predictive methods to build a robust and cross-validated approach of patient-specific glioblastoma forecasting.

REFERENCES

[1] Roger Stupp, Warren P Mason, Martin J Van Den Bent, Michael Weller, Barbara Fisher, Martin JB Taphoorn, Karl Belanger, Alba A Brandes, Christine Marosi, Ul-

rich Bogdahn, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. *New England journal of medicine*, 352(10):987–996, 2005.

[2] Mark Brown and Richrd C Semelka. Mri: basic principles and application. 1999.

[3] Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein. nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. *Nature methods*, 18(2):203–211, 2021.