

MACHINE-LEARNING PREDICTION OF MICROSCOPIC BUBBLE-GROWTH CHARACTERISTICS

Jan Bureš^{1,*}, Lubomír Bureš², Mattia Bucci³ and Matteo Bucci⁴

¹ Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 115 19 Prague, Czech Republic, buresj11@fjfi.cvut.cz

² Scientific Computing, Theory and Data, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland, lubomir.bures@psi.ch

³ Faculty of Mechanical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia, mattia.bucci@fs.uni-lj.si

⁴ Nuclear Science and Engineering Department, Massachusetts Institute of Technology, 02139 Cambridge, United States of America, mbucci@mit.edu

Keywords: *Bubble Growth, Microlayer, Machine Learning, Image Processing*

During the process of nucleate boiling, vapour bubbles form at a heated surface, they grow and subsequently detach, thereby removing a significant amount of energy from the surface. However, the exact bubble growth configuration is often unknown, complicating the formulation of quantitative predictions about the heat-removal performance. Computational Fluid Dynamics (CFD) methods are often employed to study the bubble growth. In this work, rather than using a numerical approach, we analyse the process using machine learning tools. First, we construct an algorithm to process the experimental data recently measured at the Massachusetts Institute of Technology (MIT) [1] and use it to obtain the geometrical features describing the bubble in all its stages of growth. Second, we use the obtained features to train a machine learning model to predict the position of the triple line of contact among the solid, liquid and gas phases, both in microlayer and contact-line regimes of bubble growth. Very good agreement for the validation set is obtained. By knowing the position of the triple line, the microlayer extent can be subsequently deduced, providing data for heat-transfer calculations. This work thus presents a different approach to quantitative bubble growth analysis, such as [2], and can be used for informing boiling simulations involving the use of reduced-order models (e.g. [3]).

REFERENCES

- [1] M. Bucci, *A theoretical and experimental study of vapor bubble dynamics in separate effect pool boiling conditions*. Master's thesis, University of Pisa, Italy. Conducted at MIT, 2020.
- [2] A. Urbano, S. Tanguy, G. Huber and C. Colin, Direct numerical simulation of nucleate boiling in micro-layer regime. *International Journal of Heat and Mass Transfer*, Vol. **123**, pp. 1128–1137, 2018.
- [3] Y. Sato and B. Ničeno, A depletable micro-layer model for nucleate pool boiling. *Journal of Computational Physics*, Vol. **300**, pp. 20–52, 2015.