

High-frequency estimates on boundary integral operators for the Helmholtz exterior Neumann problem

J. Galkowski¹, P. Marchand² and E. A. Spence³

¹ Department of Mathematics, University College London, 25 Gordon Street, London, WC1H 0AY, UK, J.Galkowski@ucl.ac.uk and www.ucl.ac.uk/~ucahalk/

² POEMS, CNRS, INRIA, ENSTA Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France, pierre.marchand@inria.fr and pmarchand.pages.math.cnrs.fr

³ Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK,
E.A.Spence@bath.ac.uk and people.bath.ac.uk/eas25/

Keywords: *boundary integral equation, boundary element method, Helmholtz equation, high frequency*

We study a commonly-used second-kind boundary-integral equation for solving the Helmholtz exterior Neumann problem at high frequency, namely the Regularized Combined Field Integral Equation (RCFIE) introduced in [1]. Writing Γ for the boundary of the obstacle, this integral operator map $L^2(\Gamma)$ to itself, contrary to its non-regularized version.

We prove new frequency-explicit bounds on the norms of both the RCFIE and its inverse. The bounds on the norm are valid for piecewise-smooth Γ and are sharp, and the bounds on the norm of the inverse are valid for smooth Γ and are observed to be sharp at least when Γ is curved.

Together, these results give bounds on the condition number of the operator on $L^2(\Gamma)$; this is the first time $L^2(\Gamma)$ condition-number bounds have been proved for this operator for obstacles other than balls [2].

REFERENCES

- [1] O. Bruno and T. Elling and C. Turc, Regularized integral equations and fast high-order solvers for sound-hard acoustic scattering problems. *International Journal for Numerical Methods in Engineering*, 2012.
- [2] Y. Boubendir and C. Turc, Wave-number estimates for regularized combined field boundary integral operators in acoustic scattering problems with Neumann boundary conditions. *IMA Journal of Numerical Analysis*, 2013.