

A Benchmark for Fluid-Structure Interaction in Hybrid Manufacturing: Simulation with preCICE in OpenFOAM

Sarah Dietrich^{*1}, Julian Seuffert¹, Henrik Werner^{1,2}, Nils Meyer¹, Christian Poppe^{1,3}, Constantin Krauß¹, and Luise Kärger¹

¹ Karlsruhe Institute of Technology (KIT), Institute of Vehicle System Technology - Lightweight Technology, Rintheimer Querallee 2, 76131 Karlsruhe, Germany
e-mail: sarah.dietrich@kit.edu, web-page: <https://www.fast.kit.edu/lbt>

² Karlsruhe Institute of Technology (KIT), Institute for Applied Materials - Materials Science and Engineering, Engelbert-Arnold-Straße 4 76131 Karlsruhe, Germany
e-mail: henrik.werner@kit.edu, web-page: <https://www.iam.kit.edu/wk>

³ SIMUTENCE GmbH, Rintheimer Querallee 2, 76131 Karlsruhe, Germany
e-mail: info@simutence.de, web-page: <https://www.simutence.de>

Keywords: *Fluid-Structure Interaction, composites, hybrid manufacturing, benchmark*

Fluid-structure interaction (FSI) occurs in various hybrid manufacturing processes, such as mold filling of fiber composite sandwich components with an integrated foam core in the RTM process [1], simultaneous molding and filling of novel fiber-metal laminates, or insert deformation during over-molding. Process simulation methods provide important tools to reliably design hybrid manufacturing processes, although simulating FSI during such processes is challenging due to the shifting and deforming interface between fluid and solid and the varying spatial domain.

In this contribution, a benchmark test is presented to verify and evaluate different simulation approaches for FSI in hybrid manufacturing processes. The test involves the interaction of a deformable circular metal blank with the cylindrical squeezing flow of a highly viscous fluid. Compression force, blank deformation, and flow front propagation are used to compare different numerical approaches with experimental results.

The simulations highlighted in this work are carried out by coupling the fluid simulation in OPENFOAM to a structural simulation in CALCULIX using the coupling library PRECICE. The flow of the highly viscous fluid is modeled using a two-phase volume of fluid approach with a dynamic mesh and passes the resulting hydrodynamic forces to PRECICE as input to the structural simulation of the deformable metal blank, which returns displacements at the interface in each increment. The approach for the proposed benchmark test is compared in terms of accuracy and computation time with different simulation approaches from other works such as e.g. Coupled Eulerian-Lagrangian (CEL).

REFERENCES

- [1] Seuffert, J., Kärger, L., and Henning, F., *Resin Transfer Molding (RTM) of fiber-reinforced polymer sandwich parts: mold filling simulations with fluid structure interaction*, ECCOMAS Thematic Conference on Coupled Problems, 2021