
The 8th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2022

5-9 June 2022, Oslo, Norway

Design And Analysis Of Task-based Parallelization Of A
Discontinuous Galerkin Euler Flow Solver On Heterogeneous

Architectures

Sangeeth Simon1,2,∗, Vincent Perrier1,2, Jonathan Jung2,1 and Matthieu
Haefele3

1Team Cagire, INRIA Bordeaux Sud-Ouest
2 Laboratoire de Mathématiques et de leurs applications, Université de Pau et des Pays

de l’Adour Bâtiment IPRA, Avenue de l’Université, Pau, France-64 013.
3Universite de Pau et des Pays de lAdour, E2S UPPA, CNRS, LMAP, Pau,

France-64 013.

Keywords: Task-based Parallelization, StarPU, Discontinuous Galerkin, Higher order,
Heterogeneous computing, Euler System.

Modern high performance computing hardware is increasingly a complex heterogeneous
architecture. They commonly comprise of various dissimilar computing units like multi-
core processors, specialized co-processors, GPGPUs, FPGAs etc., coexisting on an array
of fast interconnected nodes. In combination with cache-coherent unified virtual memory
systems, these machines are capable of high-bandwidth memory access, and offers scope
for improved application performances at reduced power consumption. However, from the
perspective of an application developer, this heterogeneity is a double-edged sword: on
one hand it offers multiple layers of parallelism for useful exploitation, while on the other
it poses a serious challenge in designing portable applications capable of approaching the
theoretical peak performances on such architectures.

An interesting alternative to efficiently parallelize applications on heterogeneous architec-
tures is the task-based programming model [1]. The central idea in this model is to express
the application parallelism as a series of asynchronous non-blocking ‘tasks’ with explicit
data dependencies among them. These tasks are then submitted to an underlying run-
time scheduler, which arranges them into a directed acyclic graph. On such a task graph,
each node represents a task and the connectivity edges represents the data dependencies.
The task graph enables the scheduler to identify tasks that can be executed in parallel
and map them onto the appropriate computational resources on-the-fly. Additionally, the
data transfers between various devices on the hardware are also handled exclusively by
the scheduler with little intervention from the programmer. Among the various schedulers
that exist today, StarPU[2] is a compelling option due to its simple interfaces, expressive
data management library, dynamic scheduling capabilities, and the flexibility it allows
toward designing custom scheduling strategies.

Although StarPU has been successfully used to design parallel linear algebra libraries
[3], only a few attempts have explored their effectiveness in the field of Computational
Fluid Dynamics (CFD) [4, 5, 6, 7]. These efforts have focused exclusively on building task-
parallel CFD applications based upon conventional lower-order Finite Difference (FD) and



2

Finite Volume (FV) method. However, there is a general contention that task parallelism
would be inefficient for such applications because of the inherent low arithmetic intensity
(AI) associated with low order versions of these methods. Moreover, low AI also results
in tasks with smaller execution times which may not justify the scheduling overhead
incurred in executing them. To overcome this, some researchers have proposed designing
artificially larger tasks or grouping together various algorithmic steps into tasks to improve
their execution times [5, 4]. An alternative option could be to focus on improving the
floating point operations (flops) of the application kernels by employing spatially higher
order versions of these methods. Unfortunately, achieving such accuracy improvements
for the FD or the FV methods is neither straightforward nor computationally efficient.
Also, any potential gain in flops achieved from such higher-order variants is usually offset
by the communication cost incurred in dealing with the wider stencils required for such
accuracy gains.

In this regard, modern higher order CFD methods based on the Discontinuous Galerkin
(DG) framework offers an opportunity. The compact stencil, the naturally high AI
per mesh element, fewer communication between elements, hp-adaptability, an invert-
ible block diagonal mass matrix etc. makes them interesting candidates for exploiting
task-based parallelism [8]. In this work, we report on our efforts towards developing a
hardware agnostic, scalable, DG based CFD code using the StarPU framework. The
proposed code is targeted toward computing solutions to the Euler system: a classic
non-linear system of equations governing compressible fluid flows. We will report on the
strong and weak scalability results on various shared memory architectures at our disposal
like Intel Xeon Haswell E5-2680, Intel Xeon Skylake Gold, and Intel Xeon Phi KNL. We
will also discuss our findings on the domain partitioning and task granularity required to
achieve the reported scalability.

REFERENCES

[1] Thoman, Peter Et al.. A Taxonomy of Task-Based Parallel Programming Technolo-
gies for High-Performance Computing. J. Supercomput. Vol. 74, pp. 1422–1434, 2018.

[2] Augonnet, C. Thibault, S. Namyst, R. and Wacrenier, P. A. StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency and
Computation: Practice and Experience, Vol. 23(2), pp. 187–198, 2011.

[3] S. Thibault Et al.. Matrices Over Runtime Systems at Exascale. High Performance
Computing, Networking Storage and Analysis, pp.1330–1331, 2012.

[4] Couteyen C. J. M. and Roman, J. and Brenner, P. Design and analysis of a task-
based parallelization over a runtime system of an explicit finite-volume CFD code
with adaptive time stepping. Journal of Computational Science Vol. 28, pp. 439–454,
2018.

[5] Lucas, L. N. and Serpa, M. da S. and Schnorr, M. L. and Navaux, P. O. A. Task-
based parallel strategies for computational fluid dynamic application in heterogeneous
CPU/GPU resources. Concurrency and Computation: Practice and Experience Vol.
32, 2020.

[6] Jeannot, Emmanuel and Fournier, Yvan and Lorendeau, Benjamin, Experimenting
task-based runtimes on a legacy Computational Fluid Dynamics code with unstruc-
tured meshes. Computers and Fluids, Vol. 173, pp. 51–58, 2018.



3

[7] Essadki, M. Jung, J. Larat, A. Pelletier, M. Perrier, V. A Task-Driven Implementa-
tion of a Simple Numerical Solver for Hyperbolic Conservation Laws. ESAIM: ProcS.
Vol. 63, pp. 228–247, 2018.

[8] Brenger Bramas, Philippe Helluy, Laura Mendoza, Bruno Weber, Optimization of a
discontinu- ous Galerkin solver with OpenCL and StarPU.International Journal on
Finite Volumes, Vol. 15, pp. 1–19, 2020.


