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Most model order reduction (MOR) approaches for dynamical systems of the form:

ẋ(t) = f(x(t)), x(0) ∈ Rn

seek for an efficient encoding of the variables of a dynamical system on a linear manifold.
Given, for example, a Proper Orthogonal Decomposition (POD) basis V ∈ Rn,k, the
variable x(t) ∈ Rn is encoded as x̂(t) ∈ Rk and decoded as x̃(t) ∈ Rn via the relations

x̂(t) = V Tx(t) and x̃(t) = V x̂(t) ≈ x(t).

While the POD is optimal in representing a given set of solution snapshots on a linear
manifold, in many applications such as transport dominant ones, the POD coordinates
x̂(t) with a linear embedding V fail to encode complex dynamics accurately. To overcome
the general limitation of these linear projection methods, one may think of parametrizing
the dynamics x on a low-dimensional manifold M ⊂ Rk with a nonlinear mapping:

ρ : Rk → Rn : x̂(t)→ x̃(t).

Such a nonlinear parametrization can then be used for a reduced-order model via

d
dt

(ρ(x̂(t))) = f(ρ(x̂(t))), x̂(0) ∈ Rk.

As in [1], we consider a linear-quadratic model for the map ρ:

ρ : x̂(t)→ Ω(x̂(t)⊗ x̂(t)) + V x̂(t),

and as in [2], we propose a data-driven approach for identifying Ω and V .

In this contribution, we explore setups that simultaneously determine x̂ and the decoding
through V and Ω. We illustrate the performance of the quadratic manifold to design
reduced-order models for fluid flows and compare to standard linear methods.
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