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Learned simulators are interesting due to their cheap (online) computational cost, and
their excellent performance for many-query and real time problems. However, it is well
known that neural networks often behave like a black box, are sensitive to noise and often
show biased results.

Recently, the use of inductive biases—those that indicate the network how to proceed
in unseen situations—has gained popularity. For instance, if the physics under analysis
shows any type of conservative character (typically, conservation of energy), Lagrangian
or Hamiltonian formalisms can be employed as inductive biases, thus ensuring by con-
struction that they will be fulfilled.

In this work we study and compare several options for the construction of useful induc-
tive biases. For problems showing dissipation, we employ metriplectic formalisms, that
combine a Hamiltonian part so as to impose conservation of energy in closed systems
with non-negative entropy production. Similarly, to cope with geometric symmetries, we
employ graph-neural networks. Results will be presented that show the advantages of
both types of biases.
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