

Comparative study of different finite element formulations for the relaxed micromorphic model

Mohammad Sarhil^{1,*}, Lisa Scheunemann², Patrizio Neff³ and Jörg Schröder¹

¹Institute of Mechanics, University of Duisburg-Essen, Universitätstraße 15, 45141 Essen, Germany, mohammad.sarhil@uni-due.de, j.schroeder@uni-due.de, www.uni-due.de/mechanika

²Chair of Applied Mechanics, University of Kaiserslautern, Gottlieb-Daimler-Straße Postfach 3049, Kaiserslautern, Germany, scheunem@rhrk.uni-kl.de, <https://www.mv.uni-kl.de/ltm>

³Chair for Nonlinear Analysis and Modelling, University of Duisburg-Essen, Thea-Leymann-Straße 9, 45127 Essen, Germany, patrizio.neff@uni-due.de, www.uni-due.de/mathematik/ag_neff

Keywords: *metamaterial, relaxed micromorphic model, curl-conforming finite elements*

Modeling metamaterials is a challenging topic due to the underlying size-effect phenomena. Generalized continuum theories are promising computational tools for the description of such materials. The relaxed micromorphic model [1] has been used successfully to model the main microscopic and macroscopic mechanical properties of the assumed metamaterials for many applications, see for example [2]. It reduces the complexity of the general micromorphic theory and requires fewer material parameters while showing superior behavior compared to other micromorphic models as it exhibits a bounded stiffness for the small specimen. The energy functional of the relaxed micromorphic model employs the Curl of a micro-distortion field, similar to the Cosserat model, but employs the full kinematics of the micromorphic theory. Therefore, the solution exists in $H(\text{curl}, \mathcal{B})$ for the micro-distortion field while the displacement is in $H^1(\mathcal{B})$.

In our presentation, we introduce different finite element formulations for the relaxed micromorphic model, see [3]. The advantages of the tangential-conforming formulation in $H^1(\mathcal{B}) \times H(\text{curl}, \mathcal{B})$ compared to a standard formulation in $H^1(\mathcal{B}) \times H(\mathcal{B})$ are revealed via numerical examples. Furthermore, we investigate the physical interpretation of the different components of the relaxed micromorphic model.

REFERENCES

- [1] P. Neff, I.D. Ghiba, A. Madeo, L. Placidi, G. Rosi. A unifying perspective: the relaxed linear micromorphic continuum. *Continuum Mech. Thermodyn.* (2014) **26**: 639–681.
- [2] P. Neff, B. Eidel, M.V. dAgostino, M. Madeo. Identification of scale-independent material parameters in the relaxed micromorphic model through model-adapted first-order homogenization. *J. Elast.* (2020) **139**: 269–298.
- [3] J. Schröder, M. Sarhil, L. Scheunemann, P. Neff. Lagrange and $H(\text{curl}, \mathcal{B})$ based Finite Element formulations for the relaxed micromorphic model. <https://arxiv.org/abs/2112.00382> (2021).