

COMPUTATIONAL MODELING OF RESPONSIVE NEMATIC ELASTOMERS

R. Brighenti^{1*} and M.P. Cosma²

^{1*} Dept. of Engineering & Architecture, Univ. of Parma, Viale delle Scienze 181/A, 43124 Parma, ITALY, brigh@unipr.it, <http://www2.unipr.it/~brigh>

² Dept. of Engineering & Architecture, Univ. of Parma, Viale delle Scienze 181/A, 43124 Parma, ITALY, mattiapancrazio.cosma@unipr.it

Key Words: *Responsive polymers, Liquid crystal elastomers, Phase transition.*

Nematic elastomers are highly deformable polymers showing non-symmetric elasticity, provided by their capability to show a reversible phase transition between the isotropic to the transversally isotropic (nematic) phase. The above-mentioned phase transition, triggered by environmental stimuli whose nature depends on the chemistry of the material (such as heat, light, magnetic field, etc.), can be harnessed to obtain a macroscopic detectable deformation making the material responsive [1]-[3].

In the present study, we consider the nematic-isotropic phase transition occurring in Liquid Crystal Elastomers (LCE), a family of elastomers possessing rigid mesogens linked to the material's backbone chain network whose arrangement in space can be easily controlled by a temperature variation [4]. The development of LCE materials with a polydomain structure, i.e. characterized by an architected pattern of organized mesogen units arrangements, allows obtaining a wide range of actuation capabilities.

Starting from the statistical-based molecular mechanics of polymers, we illustrate the main governing equations of the mechanics of LCEs and their computational implementation in a finite element (FE) framework. The nematic to isotropic phase transition is assumed to occur when the so-called transition temperature T_{NI} of the material is overcome (Figure 1).

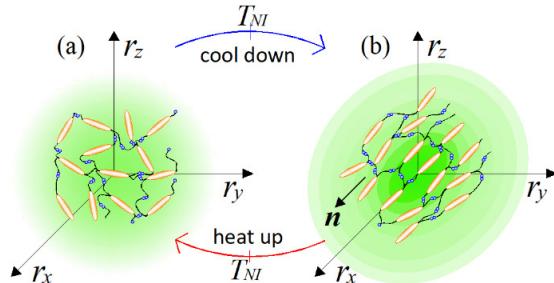


Figure 1. - Reversible isotropic (a)-nematic(b) network transition in LCEs upon a temperature change

Several examples, demonstrating the responsive capabilities of this class of materials where the mesogens arrangement is properly set, are illustrated and discussed.

REFERENCES

- [1] M. Warner, E.M. Terentjev, Nematic elastomers—a new state of matter? *Progress in Polymer Science*, Vol. **21**(5), pp. 853–891, 1996.
- [2] P. Bladon, E.M. Terentjev, M. Warner, Deformation-induced orientational transitions in liquid crystals elastomer. *Journal de Physique II*, Vol. **4**(1), pp. 75-91, 1994
- [3] R. Brighenti, Y. Li, F.J. Vernerey, Smart polymers for advanced applications: a mechanical perspective review. *Frontiers in Materials*, Vol. **7**, 196, 2020.
- [4] R. Brighenti, C.G. McMahan, M.P. Cosma, A. Kotikian, J.A. Lewis and C. Daraio, *J. Sol. & Struct.*, Vol. **219**, pp. 92–105, 2021.