

A posteriori error estimates by weakly symmetric stress reconstruction for the Biot problem

Gerhard Starke¹ and Fleurianne Bertrand²

¹ Fakultät für Mathematik, Universität Duisburg-Essen, Thea-Leymann-Str. 9, 45127
Essen, Germany, gerhard.starke@uni-due.de,
<https://www.uni-due.de/mathematik/agstarke/starke.php>

² University of Twente, Drienerlolaan 5, 7522 NB Enschede, Netherlands,
f.bertrand@utwente.nl

Keywords: *Biot Problem, Stress Reconstruction, A Posteriori Error Estimates*

A posteriori error estimates are constructed for the three-field variational formulation of the Biot problem involving the displacements, the total pressure and the fluid pressure. The discretization under focus is the $H^1(\Omega)$ -conforming Taylor–Hood finite element combination, consisting of polynomial degrees $k + 1$ for the displacements and the fluid pressure and k for the total pressure. An a posteriori error estimator is derived on the basis of $H(\text{div})$ -conforming reconstructions of the stress and flux approximations. The symmetry of the reconstructed stress is allowed to be satisfied only weakly. The reconstructions can be performed locally on a set of vertex patches and lead to a guaranteed upper bound for the error with a constant that depends only on local constants associated with the patches and thus on the shape regularity of the triangulation. Particular emphasis is given to nearly incompressible materials and the error estimates hold uniformly in the incompressible limit. Numerical results on the L-shaped domain confirm the theory and the suitable use of the error estimator in adaptive strategies.

REFERENCES

- [1] F. Bertrand and G. Starke, A posteriori error estimates by weakly symmetric stress reconstruction for the Biot problem. *Comp. & Maths. with Appl.*, Vol. **91**, pp. 3–14, 2021.
- [2] J. Korsawe and G. Starke, A least squares mixed finite element method for Biot’s consolidation problem in porous media. *SIAM J. Numer. Anal.*, Vol. **43**, pp. 318–339, 2005.
- [3] J.J. Lee, K.A. Mardal and R. Winther, Parameter-robust discretization and preconditioning of Biot’s consolidation model. *SIAM J. Sci. Comput.*, Vol. **39**, pp. A1–A24, 2017.