

APPLIED ELEMENT MODELLING FOR SEISMIC ASSESSMENT OF MASONRY BUILDINGS WITH FLEXIBLE ROOFS

Ahsana P. Vatteri¹, Rohit K. Adhikari² and Dina D'Ayala³

¹ PhD Student, ahsana.vatteri.17@ucl.ac.uk

² Research Fellow, r.adhikari@ucl.ac.uk

³ Professor, d.dayala@ucl.ac.uk

^{1,2,3} Department of Civil, Environmental and Geomatic Engineering, University College London

Key Words: *Masonry, Confined masonry, School buildings, Applied element method, Pushover analysis*

Masonry construction is one of the most vulnerable typologies under seismic action, as evidenced in past earthquakes [1,2] (Murty *et al.*, 2012; Rai *et al.*, 2016). However, masonry buildings are built around the world due to its affordability and durability, including critical facilities such as schools. Several features are developed to improve seismic performance of ordinary masonry buildings, such as confining the masonry panels with reinforced concrete elements [3] (Meli *et al.*, 2011). This paper investigates lateral capacity of non-engineered ordinary and confined masonry school building typologies with flexible diaphragms found in developing countries such as Nepal and India.

A novel modelling approach based on the Applied Element Method (AEM) [4] is employed for nonlinear pushover analysis on such buildings, by applying monotonously increasing ground acceleration method for pushover analysis. Suitable engineering demand parameters are considered for assessment of lateral capacity through this analysis. The paper presents validation of the method and seismic failure mechanisms, capacity curves, and damage states of ordinary and confined masonry school buildings.

This method could be extended to other masonry typologies and is particularly useful for seismic assessment of non-engineered masonry buildings with flexible diaphragms, usually found in the Himalayan belt, in their original as well as retrofitted condition.

REFERENCES

1. Murty *et al.* (2012) 'The Mw 6.9 Sikkim-Nepal Border Earthquake of September 18, 2011', *EERI Newsletter, EERI Special Earthquake Report*, p. :1–14.
2. Rai *et al.* (2016) 'Reconnaissance of the effects of the M7 . 8 Gorkha (Nepal) earthquake of April 25 , 2015', *Geomatics, Natural Hazards and Risk*. Taylor & Francis, 7(1), p. :1–17. doi: 10.1080/19475705.2015.1084955.
3. Meli *et al.* (2011) *Seismic design guide for low-rise confined masonry buildings*- EERI. Oakland, California: Earthquake Engineering Research Institute.
4. Meguro & Tagel-Din (2000) 'Applied element method for structural analysis : Theory and application for linear materials', *Structural Engineering/Earthquake Engineering*. Japan: Japan Society of Civil Engineers (JSCE), 17(1), p. :21-35.