

Parameter identification for turbulent transport of fusion plasmas

Louis Lamerand*, Francesca Rapetti and Didier Auroux

Université Côte d'Azur, Inria, CNRS, LJAD, France

`louis.lamerand , francesca.rapetti , didier.auroux at univ-cotedazur.fr`

Keywords: *Parameter Identification, Data Assimilation, Fusion Plasmas*

We consider a κ - ε model for turbulences in fusion plasmas reduced to 1D in the radial direction with self-consistent transport [1]. The evolution of the two fields κ - ε is governed by local dynamics and transverse / parallel transport. The considered model reads:

$$\begin{aligned}\partial_t Z &= \frac{D_{gBZ}}{\rho} \nabla_\rho \left(\rho \frac{Z^2}{Y} \nabla_\rho Z \right) + \gamma_Z Z - K Z^2 - Y, \\ \partial_t Y &= \frac{D_{gBY}}{\rho} \nabla_\rho \left(\rho \frac{Z^2}{Y} \nabla_\rho Y \right) + \gamma_Y Y - \gamma_Z \frac{Y^2}{Z^{3/2}},\end{aligned}$$

where Y and Z are the normalised ε and κ , and ρ the normalised radial position. D_{gB} , the diffusion coefficients, γ , the normalised effective growth rates and K the Kubo coefficient are the reduced parameters determining the behaviour of the system.

For a given set p of such parameters, knowing the target sets of vectors (Z_i^{obj}) and (Y_i^{obj}) corresponding with observation times t_i , we define the following cost function:

$$j(p) = J(Z(p), Y(p)) = \sum_i \frac{1}{2} \left(\|(Z(p))(t_i^{obj}) - Z_i^{obj}\|_2^2 + \|(Y(p))(t_i^{obj}) - Y_i^{obj}\|_2^2 \right) + \Pi(p),$$

where Π is a regularising penalization term, depending directly on the parameters.

Minimising the cost function j allows us to identify the best parameters p , in the sense that the corresponding trajectory of the normalised κ - ε model is the closest as possible to the target values. The minimisation is performed using a quasi-Newton algorithm [2] and the gradient of the cost function is obtained by automatic differentiation [3].

The identification procedure has been tested on two different cases : spreading with radial variation of the growth rates ratio, and spreading with equal variation of both growth rates and different diffusion coefficients for Z and Y . Parameters are globally very well estimated in both cases.

REFERENCES

- [1] H. Bufferand *et al.*, Numerical modelling for divertor design of the WEST device with a focus on plasma-wall interactions, *Nucl. Fusion* **55**, 053025, 2015.
- [2] J. Ch. Gilbert and C. Lemaréchal, Some numerical experiments with variable-storage quasi-Newton algorithms. *Mathematical Programming*, **45**, pp. 407-435, 1989.
- [3] L. Hascoët and V. Pascual. The Tapenade automatic differentiation tool: principles, model, and specification. Research Report RR-7957, INRIA, 2012.