

Potential reconstruction techniques for *a posteriori* error estimation: a guided tour

Jhabriel Varela^{*,1}, Elyes Ahmed², Eirik Keilegavlen¹, Jan M. Nordbotten¹,
 and Florin A. Radu¹

¹ Center for Modeling of Coupled Subsurface Processes, University of Bergen, Bergen, Norway, jhabriel.varela@uib.no, eirik.keilegavlen@uib.no, jan.nordbotten@uib.no, florin.radu@uib.no.

² Mathematics and Cybernetics, SINTEF Digital, Oslo, Norway, elyes.ahmed@sintef.no.

Keywords: *Error Estimates, Potential Reconstruction, Mixed-Dimensional Geometry*

Consider the pure diffusion model defined in a domain $\Omega \in \mathbb{R}^n$ ($n = \{2, 3\}$), and let $p \in H_0^1(\Omega)$ and $\mathbf{u} \in \mathbf{H}(\text{div}, \Omega)$ refer respectively to the exact potential and flux (in a weak sense), related via the diffusive law $\mathbf{u} = -\mathbf{S}\nabla p$, with \mathbf{S} representing a symmetric, bounded, and positive-definite second-order tensor. In this investigation, we focus on upper bounds of the type

$$|||p - q||| \leq ||\mathbf{S}^{-1/2}\mathbf{v} - \mathbf{S}^{1/2}\nabla q||_{L^2(\Omega)} \quad \forall q \in H_0^1(\Omega), \mathbf{v} \in \mathbf{H}(\text{div}, \Omega), \quad (1)$$

where $q \in H_0^1(\Omega)$ and $\mathbf{v} \in \mathbf{H}(\text{div}, \Omega)$ are *arbitrary* approximations to p and \mathbf{u} , respectively.

Naturally, one does not use arbitrary approximations, but rather solutions arising from numerical methods. In this context, if mixed dual approximations to the model are available, one counts with $\mathbf{u}_h \in \mathbf{H}(\text{div}, \Omega)$ and $p_h \in L^2(\Omega)$. Thus, it is necessary to increase the regularity of $p_h \in L^2(\Omega)$ and obtain a reconstructed potential $\tilde{p}_h \in H_0^1(\Omega)$.

This reconstruction process, however, is not unique, and since we only need a potential in $H_0^1(\Omega)$, there is some room for flexibility. This work aims at testing the performance of interpolators of the type $\mathcal{G} : L^2(\Omega) \rightarrow H_0^1(\Omega)$, such that $\tilde{p}_h = \mathcal{G}(p_h)$, and (1) can be computed using $\tilde{p}_h \in H_0^1(\Omega)$ and $\mathbf{u}_h \in \mathbf{H}(\text{div}, \Omega)$. Our study encompasses reconstruction techniques used in [1], [2], and [3]. Numerical experiments are applied to the Darcy equation in two and three dimensions both for fractured and unfractured domains.

REFERENCES

- [1] S. Cochez-Dhondt, S. Nicaise, and S. I. Repin. A posteriori error estimates for finite volume approximations. *Math. Model. Nat. Phenom.*, 4(1):106–122, 2009.
- [2] J. Varela, E. Ahmed, E. Keilegavlen, J. M. Nordbotten, and F. A. Radu. A posteriori error estimates for hierarchical mixed-dimensional elliptic equations, 2021. Preprint at <https://arxiv.org/abs/2101.08331v2>.
- [3] M. Vohralík. Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods. *Math. Comp.*, 79(272):2001–2032, 2010.