

## NEURAL NETWORK BASED CLOSURES TO FLUID SYSTEMS TRAINED WITH KINETIC SIMULATIONS

**L. Bois\*<sup>1,2</sup>, E. Franck<sup>1,2</sup>, L. Navoret<sup>1,2</sup> and V. Vigon<sup>1</sup>**

<sup>1</sup> Institut de Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg et  
CNRS, 7 rue René Descartes, 67000 Strasbourg, France  
laurent.navoret, vigon at math.unistra.fr  
<http://irma.math.unistra.fr>

<sup>2</sup> INRIA Nancy-Grand Est, TONUS Project, 67000 Strasbourg, France  
leo.bois, emmanuel.franck at inria.fr  
<https://www.inria.fr/en/centre-inria-nancy-grand-est>

**Keywords:** *Plasma, Neural Networks, Vlasov-Poisson, Closure, Fluid Models, Knudsen Number*

We develop a neural network based closure to the one-dimensional fluid moment equations, that allows us to carry out simulations of plasmas in intermediate collisional regimes. The neural network is trained to predict the heat flux of the plasma from its density, mean velocity and temperature, using data produced with kinetic simulations of the Vlasov-Poisson equation. We use a convolutional neural network with a V-Net like architecture, which allows it to capture non-local dependances, and results in a global closure. Data generation and data processing are designed with the aim of ensuring uniform accuracy on a wide range of Knudsen numbers and initial conditions. We carry out numerical experiments to assess the accuracy and generalization ability of the neural network based closure.

Our work relates to [3], that explores the ability of several models to learn a given closure like the Hammett-Perkins closure. By comparison, our method leverages data from kinetic simulations which allows the model to learn a new closure. A different approach for leveraging kinetic simulations was carried out in [2], where the authors construct a reduced model using machine learning.

## REFERENCES

- [1] L. Bois, E. Franck, L. Navoret and V. Vigon, A neural network closure for the Euler-Poisson system based on kinetic simulations, *ArXiV*, Preprint.
- [2] J. Han, C. Ma, Z. Ma and E. Weinan, Uniformly Accurate Machine Learning Based Hydrodynamic Models for Kinetic Equations, *Proc Natl Acad Sci USA*, Vol **116**, Num. 44, pp. 21983-21991, 2019.
- [3] R. Maulik, N. A. Garland, J. W. Burby, X.-Z. Tang and P. Balaprakash, Neural network reperesentability of fully ionized plasma fluid model closures, *Phys. Plasmas*, Vol. **27**, Num. 7, 2020.