

Digital Twins for Cyber-Physical Systems

**Peter Gorm Larsen¹, Jalil Boudjadar¹, Lukas Esterle¹, Mirgita Frasher¹,
Claudio Gomes¹, Alexandros Iosifidis¹, Hugo Macedo¹, Emil Madsen¹, Carl
Schulz¹, Prasad Talasia¹, Casper Thule¹ and Jim Woodcock^{1,2}**

¹ Aarhus University, DIGIT, Department of Electrical and Computer Engineering,
Finlandsgade 22, 8200 Aarhus N, Denmark

² University of York, Department of Computer Science, Deramore Lane, Heslington,
York YO10 5GH, UK

Keywords: *Digital twins, co-simulation, machine learning*

In a series of externally funded project we focus on how digital twins can be created from models developed during the engineering of a Cyber-Physical System (CPS), and can be used during its deployment. The digital twin will be calibrated and run with data coming from the sensors of the CPS.

The overall system (including the environment) is evaluated during the development phase by collaborative simulation (co-simulation), that is, by coordinating the simulators specialised in each of the constituent models [2]. The coordination of the simulators is done by an orchestration engine [4].

We mostly use the Functional Mock-up Interface standard, originally developed for the automotive domain [1]. In addition, Machine Learning techniques can be used to approximate dynamical systems as constituent components [3].

REFERENCES

- [1] Blochwitz, T., Otter, M., Akesson, J., Arnold, M., Clauss, C., Elmqvist, H., Friedrich, M., Junghanns, A., Mauss, J., Neumerkel, D., Olsson, H., Viel, A.: The Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation Models. In: Proceedings of the 9th International Modelica Conference. Munich, Germany (September 2012)
- [2] Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation: a Survey. ACM Comput. Surv. **51**(3), 49:1–49:33 (May 2018)
- [3] Legaard, C.M., Schranz, T., Schweiger, G., Drgoňa, J., Falay, B., Gomes, C., Iosifidis, A., Abkar, M., Larsen, P.G.: Constructing neural network-based models for simulating dynamical systems (2021)
- [4] Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.G.: Maestro: The INTO-CPS co-simulation framework. Simulation Modelling Practice and Theory **92**, 45 – 61 (2019). <https://doi.org/https://doi.org/10.1016/j.simpat.2018.12.005>, <http://www.sciencedirect.com/science/article/pii/S1569190X1830193X>