

Coupled problems at dissipative microstructures: Modelling and computational homogenization via the Virtual Element Method

**Christoph Böhm¹, Blaž Hudobivnik¹, Fadi Aldakheel^{1,2}, Marc-André Keip³
and Peter Wriggers¹**

¹ Institute of Continuum Mechanics, Leibniz University Hannover, An der Universität 1,
30823 Garbsen, Germany

² Zienkiewicz Centre for Computational Engineering, Faculty of Science and
Engineering, Swansea University, Bay Campus, SA1 8EN, UK

³ Chair of Materials Theory, Institute of Applied Mechanics (Civil Engineering),
University of Stuttgart, Pfaffenwaldring 7, 70569 Stuttgart, Germany
{boehm, hudobivnik, aldakheel, wriggers}@ikm.uni-hannover.de
marc-andre.keip@mechbau.uni-stuttgart.de

Keywords: *Virtual Element Method, Multiphysics Problems, Computational Homogenization, Dissipative Effects*

The Virtual Element Method (VEM) was introduced in its basic representation in [1] and [2]. The ability of treating elements with arbitrary number of nodes and possible non-convex shapes renders VEM as a suitable tool to discretize heterogeneous microstructures with regards to mesh flexibility. While FE-meshes might need a partial refinement to restore accuracy, VEM proved higher accuracy at the same number of degrees of freedom when compared to finite element solutions for coupled reversible problems at polycrystalline microstructures [3] and also for dissipative crystal-plasticity frameworks in [4]. In this contribution, a multi-physics coupled problem, incorporating also dissipative effects in a microstructural environment, is presented. It illustrates the advantage of using VEM in such heterogeneous geometric environments with regards to modelling and computational homogenization. Representative numerical examples will demonstrate the superior performance of VEM in terms of accuracy and robustness, compared to classic finite element approaches when quantities of interest are of effective nature.

REFERENCES

- [1] Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L. D., & Russo, A. (2013). Basic principles of virtual element methods. *Mathematical Models and Methods in Applied Sciences*, 23(01), 199-214.
- [2] Beirão da Veiga, L., Brezzi, F., Marini, L. D., & Russo, A. (2014). The hitchhiker's guide to the virtual element method. *Mathematical Models and Methods in Applied Sciences*, 24(08), 1541-1573.
- [3] Böhm, C., Hudobivnik, B., Marino, M., & Wriggers, P. (2021). Electro-magneto-mechanically response of polycrystalline materials: Computational Homogenization via the Virtual Element Method. *Computer Methods in Applied Mechanics and Engineering*, 380, 113775.
- [4] Böhm, C., Munk, L., Hudobivnik, B., Aldakheel, F., & Wriggers, P. (2021). Modelling finite deformation multi-slip scenarios at polycrystalline microstructures via the Virtual Element Method. *Preprint, under review*.