

MODEL ORDER REDUCTION FOR PHYSICS-BASED MACHINE LEARNING

Laura Mainini

Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy,
laura.mainini@polito.it

Keywords: *Model Order Reduction, Scientific Machine Learning, Physics based machine learning*

Inverse problems, uncertainty quantification and multidisciplinary design optimization are common problems in science and engineering that are associated with parametric studies and frequently require multiple evaluations of expensive numerical models. This presentation discusses methods that leverage the synergies between projection based model reduction and statistical learning to obtain physics-informed computationally efficient representations suitable for multi-query and time constrained applications in engineering [1, 2, 3]. In particular, we will discuss formulations for scientific machine learning that we developed to cope with small sets of available observations and address interpretability issues. Several case studies will be overviewed including computational fluid dynamics and computational mechanics problems in transportation engineering.

REFERENCES

- [1] R. Swischuk, L. Mainini, B. Peherstorfer and K. Willcox, Projection-based model reduction: Formulations for physics-based machine learning. *Computers & Fluids*, Vol. 179, pp.704-717. 2019
- [2] L. Mainini and K. Willcox, Data to decisions: Real-time structural assessment from sparse measurements affected by uncertainty. *Computers & Structures*, Vol. 182, pp.296-312. 2017
- [3] P. C. Berri, M.D.L. Dalla Vedova, L. Mainini, Learning for predictions: Real-time reliability assessment of aerospace systems. *AIAA Journal*. Online 16 Sept. 2021. In Press.