

Data-driven parameter and model order reduction for industrial optimisation problems

Marco Tezzele

Oden Institute for Computational Engineering and Sciences,
University of Texas at Austin, marco.tezzele@austin.utexas.edu

Keywords: *Parameter space reduction, Reduced order modeling, Optimization*

In this contribution we present data-driven reduced order models with a focus on reduction in parameter space to fight the curse of dimensionality in design optimization. We show two extensions of the Active Subspaces (AS) technique: a kernel version exploiting an intermediate mapping to a higher dimensional space, and a local approach in which a clustering induced by a global active subspace is used for regression and classification tasks [1]. We also integrate parameter space reduction methods within a multi-fidelity nonlinear autoregressive scheme to improve the approximation accuracy of high-dimensional functions [2], using only high-fidelity data. We also show how to integrate AS into the genetic algorithm to enhance the convergence during the optimization of high-dimensional quantities of interest [3]. These methods, together with non-intrusive reduced order models based on proper orthogonal decomposition, are applied to a diverse range of engineering problems such as structural optimization of cruise ships [4], shape optimization of a combatant hull, and the prediction of hydroacoustic noise [5].

This work has been conducted at SISSA mathLab within the framework of the IRONTM project, an industrial Ph.D. grant financed by Fincantieri S.p.A..

REFERENCES

- [1] F. Romor, M. Tezzele, and G. Rozza. A local approach to parameter space reduction for regression and classification tasks. *arXiv preprint arXiv:2107.10867*, 2021.
- [2] F. Romor, M. Tezzele, M. Mrosek, C. Othmer, and G. Rozza. Multi-fidelity data fusion through parameter space reduction with applications to automotive engineering. *arXiv preprint arXiv:2110.14396*, 2021.
- [3] N. Demo, M. Tezzele, and G. Rozza. A Supervised Learning Approach Involving Active Subspaces for an Efficient Genetic Algorithm in High-Dimensional Optimization Problems. *SIAM Journal on Scientific Computing*, 43(3):B831–B853, 2021.
- [4] M. Tezzele, L. Fabris, M. Sidari, M. Sicchiero, and G. Rozza. A multi-fidelity approach coupling parameter space reduction and non-intrusive POD with application to structural optimization of passenger ship hulls. *Submitted*, 2021.
- [5] M. Gadalla, M. Cianferra, M. Tezzele, G. Stabile, A. Mola, and G. Rozza. On the comparison of LES data-driven reduced order approaches for hydroacoustic analysis. *Computers & Fluids*, 216:104819, 2021.