

A new data assimilation framework using the modified Constitutive Relation Error for online structural monitoring: application to shaking-table experiments

Matthieu Diaz^{1*}, Pierre-Étienne Charbonnel² and Ludovic Chamoin¹

¹ Université Paris-Saclay, ENS Paris-Saclay, LMT - Laboratoire de Mécanique et Technologie, 91190 Gif-sur-Yvette, France – {matthieu.diaz,ludovic.chamoin}@ens-paris-saclay.fr

² DES-Service d’Études Mécaniques et Thermiques (SEMT), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France – pierreetienne.charbonnel@cea.fr

Keywords: *Data assimilation, Kalman filtering, modified Constitutive Relation Error, Low-frequency dynamics, Shaking-table experiments, Earthquake Engineering*

Recently, a first step towards the integration of numerical models in shaking-tables control strategy has been performed in [1] where an offline model updating framework based on the minimization of a *modified Constitutive Relation Error* functional (mCRE) has been tailored to low-frequency dynamics. Following the strategy proposed by [2], we address here sequential data assimilation by integrating the mCRE as new observer within a dual Unscented Kalman filter, leading to a new *modified Dual Kalman filter* algorithm (MDKF). After being validated using synthetic data, the methodology has successfully processed actual measurements of the SMART2013 benchmark. In the latter is emphasized the possibility to perform real-time monitoring of complex structures undergoing nonlinear phenomena (see FIG. 1). The good correlation with former identification results [1] illustrates the relevance of this new approach for online structural monitoring and suggests promising use of MDKF for adaptive control design purposes.

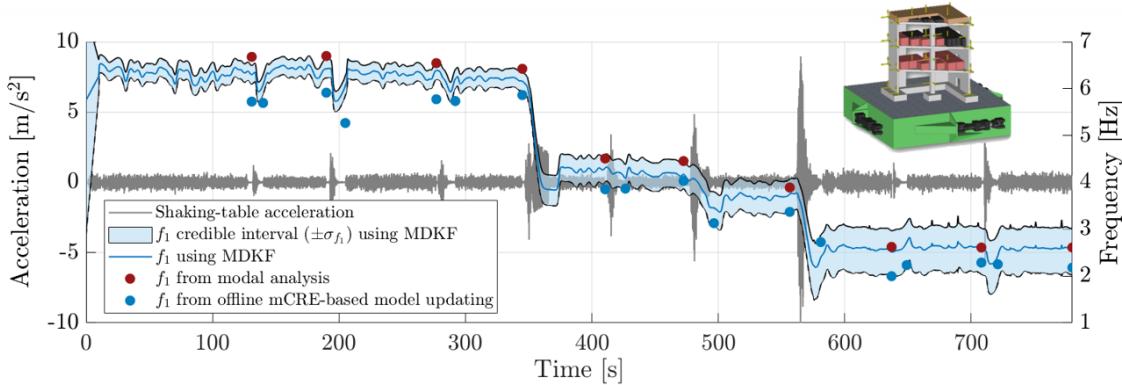


Figure 1: Tracking the first eigenfrequency of the SMART2013 specimen using MDKF.

REFERENCES

- [1] M. Diaz, P.-É. Charbonnel, L. Chamoin, *Robust energy-based model updating framework for random processes in dynamics: application to shaking-table experiments*. Accepted for publication in Computers and Structures - hal-03528432
- [2] B. Marchand, L. Chamoin, C. Rey, *Real-time updating of structural mechanics models using Kalman filtering, modified constitutive relation error, and proper generalized decomposition*. International Journal for Numerical Methods in Engineering - Vol. 107 (9), 786–810, 2016.