

IN SILICO CLINICAL TRIALS: SILICOFCM – COUPLING OF PHYSICAL BASED AND DATA DRIVEN MODELING

Nenad Filipovic^{1,2}, Bogdan Milicevic², Miljan Milosevic³, Vladimir Simic³, Tijana Sustersic^{1,2}, Smiljana Tomasevic^{1,2}, Momcilo Prodanovic^{1,3}, Srboljub Mijailovich³, Zoran Bosnic³ and Milos Kojic^{5,6}

¹ Bioengineering Research and Development Center, BIOIRC, Kragujevac, Serbia, fica@kg.ac.rs

² Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia, bogdan.milicevic@uni.kg.ac.rs

³ Institute for Information Technology, Kragujevac, Serbia, miljan.m@kg.ac.rs

⁴ Illinois Institute of Technology, Department of Biology, Chicago, IL 60616, USA, smjailo@gmail.com

⁵ Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia, Zoran.Bosnic@fri.uni-lj.si

⁶ Serbian Academy of Sciences and Arts, Belgrade, Serbia, mkojic42@gmail.com

⁷ Houston Methodist Research Institute, Houston, USA, mkojic42@gmail.com

Key Words: *cardiovascular, in silico, multiscale, genetic, finite element, machine learning*

SILICOFCM project [1] present multiscale modeling of familial cardiomyopathy disease comprehensive list of patient specific features such as genetic, biological, pharmacologic, clinical, imaging. We made coupling of physical base and data driven modeling. Machine learning technique was used to predict target attribute as NYHA, and left ventricle geometrica parameters from ultrasound examination based on the database for more than 10,000 retrospective patients data set. Left ventricle ejection fraction was also important parameter for drug prediction for specific patient. A coupled model which includes multiscale modelling of realistic sarcomeric system, genetics patient profile, electrophysiology, realistic directions of muscle fibers, solid-fluid interaction coupled to electrophysiology of the heart was implemented [2]. Also drug distribution in the heart and effects of different drugs are tested for cardiomyopathy disease. SILICOFCM project connected basic experimental research with clinical study and bioinformatics, data mining and image processing tools using very advanced computer models drug, and patient database and regulative in order to reduce animal and clinical studies.

Acknowledgments: This work is supported by the SILICOFCM project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777204. The research was also funded by Serbian Ministry of Education, Science, and Technological Development, grants [451-03-9/2021-14/200378 (Institute for Information Technologies, University of Kragujevac)] and [451-03-9/2021-14/200107 (Faculty of Engineering, University of Kragujevac)]

REFERENCES

- [1] www.silicofcm.eu
- [2] M Kojic, M Milosevic, V Simic, V Geroski, A Ziemys, N Filipovic, M Ferrari Smeared multiscale finite element model for electrophysiology and ionic transport in biological tissue, Computers in biology and medicine, Vol.108, pp.288-304.