

Modelling of anisotropic damage of 3D printed polymers under severe compression

S. Guessasma¹ and S. Belhabib²

¹ INRAE, Research Unit BIA UR1268, Rue Geraudiere, F-44316 Nantes, France,
sofiane.guessasma@inrae.fr

² University of Nantes, GEPEA, IUT Carquefou, 2 avenue du Professeur Jean Rouxel, 44475
Carquefou Cédex, France, sofiane.belhabib@univ-nantes.fr

Key Words: *additive manufacturing, finite element computation, X-ray micro-tomography, acrylonitrile butadiene styrene, damage kinetics.*

Additive manufacturing is a new technology that enables the building of 3D objects based on digital models [1-2]. A wide spectrum of processes and technologies of additive manufacturing falls within this definition, among them is the fused filament techniques widely known for processing polymeric feedstock materials [3]. This process is known to generate an anisotropic mechanical behaviour. This study aims at exploring the genuine effect of filament structuring on the anisotropic damage induced by severe compression of acrylonitrile butadiene styrene (ABS). This study combines a numerical and experimental approach. Compression up to densification is undertaken for printed ABS under various printing angles. X-ray μ -tomography imaging is conducted prior and after testing to quantify the amount and extent of generated damage. Finite element computation is attempted to predict the damage mechanism inferred to compression loading under severe conditions. The results show a significant dependence of the mechanical response to the inter-filament layout. Damage is identified to induce shear behaviour under compression loading. The varied amount of shearing is directly dependant on the ability to ease the inter-filament damage during the irreversible straining. Finite element results also show

the prevailing role of pore opening in triggering the damage extension under compression. This study concludes on the tremendous possibilities offered by fused deposition to tailor mechanical response of polymeric structures if the filament trajectories are appropriately addressed when building 3D technical parts.

REFERENCES

- [1] X. Yan, P. Gu, A review of rapid prototyping technologies and systems, *Computer-Aided Design*, Vol 28(4), pp. 307-318, 1996.
- [2] S. Guessasma, W. Zhang, J. Zhu, S. Belhabib and H. Nouri, *Int. J. Simulation and Multidisciplinary Design Optimization* Vol. 6, pp. A1-A9, 2016.
- [3] S. Guessasma, S. Belhabib and H. Nouri, Understanding the microstructural role of bio-sourced 3D printed structures on the tensile performance, *Polymer Testing*, Vol. 77 pp. 105924, 2019.