

Probing the Intrinsic Ice Adhesion at the Nanoscale

Senbo Xiao^{1*}, Jianying He¹ and Zhiliang Zhang¹

¹ Department of Structural Engineering, Norwegian University of Science and Technology (NTNU),
Trondheim, Norway
* Email: senbo.xiao@ntnu.no

Key Words: *ice adhesion, anti-icing, molecular dynamics simulations.*

The strength of ice adhesion is underpinned by the atomistic interactions at the real contact area between ice and its substrate. As such, deciphering the intrinsic ice adhesion strength at the real ice-substrate contacting area is key to the understanding of the anti-icing performances of different icephobic surfaces. The current study focuses on utilizing molecular dynamics simulations to probe the atomistic ice interactions with different substrates of varied interatomic interaction potentials,¹ and as such to gain insights on the interesting impacts of an amorphous quasi-liquid water layer on ice adhesion as well as different ice rupturing modes from the substrate.^{2, 3} The results of this study shed new light on revealing the nanoscale fundamentals of ice adhesion, and at the same time seed design concepts of future anti-icing surface.

REFERENCES

1. Xiao, S.; He, J.; Zhang, Z., Nanoscale deicing by molecular dynamics simulation. *Nanoscale* **2016**, *8* (30), 14625-14632.
2. Xiao, S.; Skallerud, B. H.; Wang, F.; Zhang, Z.; He, J., Enabling sequential rupture for lowering atomistic ice adhesion. *Nanoscale* **2019**, *11* (35), 16262-16269.
3. Fu, Y.; Xiao, S.; Skallerud, B. H.; Zhang, Z.; He, J., Assembly graphene platelets for bioinspired, stimuli-responsive, low ice adhesion surfaces. *ACS Omega* **2022**. *just accepted*.