

A geometric finite element method for MHD that preserves energy, cross-helicity, magnetic helicity, incompressibility, and $\operatorname{div} \mathbf{B} = 0$

Evan S. Gawlik^{1*}, François Gay-Balmaz²

¹ Department of Mathematics, University of Hawai‘i at Mānoa, egawlik@hawaii.edu

² CNRS - LMD, Ecole Normale Supérieure, francois.gay-balmaz@lmd.ens.fr

Keywords: *Structure-preserving, finite element, magnetohydrodynamics*

The governing equations for magnetohydrodynamics (MHD) possess a number of conserved quantities that are difficult to preserve in numerical discretizations. In recent work [1], we constructed a finite element method for inhomogeneous, incompressible MHD that preserves energy, cross-helicity (when the fluid density is constant), magnetic helicity, incompressibility, and $\operatorname{div} \mathbf{B} = 0$ to machine precision. This talk will summarize the method and discuss extensions to compressible and resistive MHD [2].

To derive the method, we make use of the the variational formulation of fluid dynamics on diffeomorphism groups. In this formulation, the fluid motion is regarded as a diffeomorphism of the fluid domain that extremizes an action functional: the time-integral of the fluid’s kinetic energy minus its potential energy. As shown in [3], one can discretize this variational principle to construct structure-preserving finite element methods for fluid flow. We did so in [3, 4] for fluids with variable density and more recently for MHD in [2, 1]. The focus of this talk will be on MHD, but techniques from [3, 4] will nonetheless play an important role.

REFERENCES

- [1] E. S. Gawlik and F. Gay-Balmaz. A finite element method for MHD that preserves energy, cross-helicity, magnetic helicity, incompressibility, and $\operatorname{div} \mathbf{B} = 0$. *Journal of Computational Physics*, **450**, 110847, (2022).
- [2] E. S. Gawlik and F. Gay-Balmaz. A structure-preserving finite element method for compressible ideal and resistive MHD. *Journal of Plasma Physics*, **87**(5), 835870501, (2021).
- [3] E. S. Gawlik and F. Gay-Balmaz. A variational finite element discretization of compressible flow. *Foundations of Computational Mathematics*, **21**, 961-1001 (2021).
- [4] E. S. Gawlik and F. Gay-Balmaz. A conservative finite element method for the incompressible Euler equations with variable density. *Journal of Computational Physics*, **412**, 109439 (2020).