

Adaptive mixed isogeometric analysis of a highly convective benchmark problem for the Boussinesq equations

Abdullah Abdulhaque¹, Trond Kvamsdal², Mukesh Kumar³ and Arne Morten Kvarving⁴

¹ Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, abdullah.abdulhaque@ntnu.no

² Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, trond.kvamsdal@ntnu.no

³ Department of Mathematics, College of Charleston, South Carolina, USA, kumarm@cofc.edu

⁴ Department of Applied Mathematics and Cybernetics SINTEF Digital, Norway
e-mail: arne.morten.kvarving@sintef.no

Key Words: *Isogeometric Analysis, Adaptive Finite Element Method, Recovery Estimation, Buoyancy-driven Flow*

ABSTRACT

In this article, we study a special benchmark problem for the Boussinesq equations. This is the Navier-Stokes equations coupled with the Advection-Diffusion equation, and it is used for modelling buoyancy-driven flow. The solution process is mixed isogeometric discretization combined with adaptive mesh refinement. We discretize the equation system with the recently proposed isogeometric versions of the Taylor-Hood, Sub-Grid and Raviart-Thomas elements [1]. The adaptive refinement is based on LR B-splines [2] and recovery estimators [3]. We investigate the suitability of our adaptive methods for Rayleigh numbers in the range 10^1 - 10^5 , by comparing with high-resolution reference solution.

REFERENCES

- [1] A. Buffa, C. de Falco, and G. Sangalli. “IsoGeometric Analysis: Stable elements for the 2D Stokes equation”. *International Journal for Numerical Methods in Fluids* 65 (2011), pp. 1407–1422.
- [2] K. A. Johannessen, T. Kvamsdal, and T. Dokken. “Isogeometric analysis using LR B-splines”. *Computer Methods in Applied Mechanics and Engineering*, 269:471–514, 2014.
- [3] M. Kumar, T. Kvamsdal, and K. A. Johannessen. “Superconvergent patch recovery and a posteriori error estimation technique in adaptive isogeometric analysis”. *Computer Methods in Applied Mechanics and Engineering*, 316, pp. 1086-1156, 2017.