

Nonlinear problem of head-on-web effect solved with a use of the “beam-inside-beam” model

P. Koziol¹

¹ Cracow University of Technology, Faculty of Civil Engineering, Department of Roads Railways and Traffic Engineering, ul. Warszawska 24, 31-155 Kraków, Poland, pkoziol@pk.edu.pl, www.pk.edu.pl

Key Words: *Head-on-web effect, Double beam, “Beam-inside-beam” model, Nonlinear properties, Wavelet approach.*

Railway mechanics and especially its dynamics still seek new modelling approaches to represent complex phenomena appearing in rail track. The paper describes a recently built “beam-inside-beam” model of rail based on double beam system [1]. This new approach to the rail dynamics analysis is still open for a more detailed analysis in the cases of more advanced systems containing the “beam-inside-beam” component.

Rail is represented by a system of two coupled dynamic differential equations describing the infinitely long Euler-Bernoulli beams. The head of rail is treated as a beam immersed in another beam representing the whole rail. It was shown in previous publications [2], that this kind of analysis clearly reflects the existence of so called head-on-web effect, i.e. differences between dynamic behaviour of head of rail and remaining part of rail in terms of vibrations.

In this paper, a hybrid semi-analytical method of solution is applied to similar model under assumption of nonlinear properties of rail track foundation [3, 4]. The system response to the load moving with constant velocity along the beam is analysed for various sets of physical parameters. All mechanical characteristics are taken from real structures, i.e. exemplary rail track and rail vehicles. Vertical vibrations and the system sensitivity are analysed depending on experimentally verified foundation stiffness nonlinearity.

Several computational examples are shown with detailed discussion regarding solution convergence and applicability of the developed model.

REFERENCES

- [1] P. Koziol, Wavelet approximation of the Adomian’s decomposition applied to a nonlinear problem of a double-beam response subject to a series of moving loads. *Journal of Theoretical and Applied Mechanics*, 52, 3, 687-697, 2014.
- [2] W. Czyczula, D. Błaszkiewicz, M. Urbanek, New Approach to Analysis of Railway Track Dynamics – Rail Head Vibrations, 2021 (accepted for *Open Engineering*).
- [3] P. Koziol, Experimental validation of wavelet based solution for dynamic response of railway track subjected to a moving train. *Mechanical Systems and Signal Processing*, 79, 174-181, 2016.
- [4] P. Koziol, Wavelet approach for the vibratory analysis of beam-soil structures: Vibrations of dynamically loaded systems. VDM Verlag Dr. Müller, Saarbrucken, 2010.