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Jet noise has remained the dominant source of aircraft noise during take-off since jetliners
were introduced over half a century ago [4]. A better understanding of the underlying
mechanisms that generate jet noise is therefore needed in order to develop quieter aero-
engines, and thereby minimize noise pollution around airports.

In this work, we will investigate how the state of the boundary layer (laminar vs turbulent)
inside the nozzle affects the flow and sound field produced by a turbulent jet. Histori-
cally, this influence has only been possible to study experimentally, owing to the large
computational cost associated with Large Eddy Simulations (LES) of turbulent boundary
layers. With recent advancements in high performance computing, however, this topic is
now possible to study numerically as well.

In recent years, several studies have demonstrated that additional noise is produced when
the boundary layer exiting the nozzle is in a laminar state [1, 2]. In order to obtain
accurate LES simulations of high Reynolds number jets, it is therefore important to
ensure that the boundary layer is in a turbulent state. Often, a tripping device placed
close to the nozzle exit is used for this purpose. For jet noise, several different approaches
have been used to trip the boundary layer. These include, but are not limited to, the use
of roughness elements along the wall [5] and injection of isotropic turbulence [2]. A good
tripping device produces realistic turbulence levels at the outlet of the nozzle, without
negatively affecting the far-field acoustic signature of the jet.

The goal of this work is to apply boundary layer tripping to a recent simulation of a
subsonic jet, see Fig. 1. The simulations will be performed with the compressible flow
solver available in the spectral/hp element framework Nektar++ (www.nektar.info) [3,
6]. The compressible flow solver in Nektar++ uses the high-order discontinuous Galerkin
(DG) method to solve the Navier-Stokes equations on unstructured grids. The account
for unresolved turbulent scales, an implicit LES (iLES) approach is used. In this ap-
proach, the favourable dissipation properties of the DG discretization are used to remove
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marginally resolved wavenumbers from the solution. The jet under consideration oper-
ates at an acoustic Mach number of M = 0.6, and diameter-based Reynolds number
of Re = 5.5 · 105. For validation, extensive experimental data obtained in the DOAK
laboratory, located at the University of Southampton, is available [7].

Figure 1: Illustration of the turbulent jet studied in this work. The turbulent flow is illustrated by Mach
number contours, and the acoustic field by normalized pressure fluctuations.
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