

Strain rate dependent material model for dynamic damage evolution in unidirectional composites

V. Singh^{1, 2, a}, R. Larsson^{2, d}, R. Olsson^{1, b} and E. Marklund^{1, c}

¹ Polymers, Fibres and Composites, RISE Research Institutes of Sweden, SE-431 22, Mölndal, Sweden, ^a vivekendra.singh@ri.se, ^b robin.olsson@ri.se, ^c erik.marklund@ri.se, www.ri.se

² Industrial and Material Science, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden, ^d ragnar@chalmers.se, www.chalmers.se

Key Words: *strain rate effects, continuum damage, unidirectional composites, viscoelasticity, viscoplasticity.*

Polymer composite materials have several applications in aeronautics and the automotive industry. However, due to anisotropy and a complex non-linear rate dependent behaviour the material/damage modelling of polymer composites under dynamic loading, e.g. impact or crash, is challenging. To support the modelling of composites under such rapid transient loading, a computational multiscale constitutive model has been developed for the progressive failure of unidirectional carbon fibre composites.

Computational homogenization and micromechanics are utilized in the modelling at the ply scale. A major focus is to predict the strain rate dependent nonlinear constitutive behaviour of unidirectional composite plies [1]. The fibres are assumed transversely isotropic, whereas the polymer is viscoelastic–viscoplastic, including a pressure dependent strength. Degradation of the polymer matrix is described by a recently developed continuum damage mechanics approach [2]. The model has been successfully implemented as a VUMAT subroutine in Abaqus/Explicit. Figure 1 shows FE simulation of strain localization as compared to experimental results of IM7/8552 in dynamic off-axis compression [3]. Reasonable correlation was found between the measured and numerically predicted results.

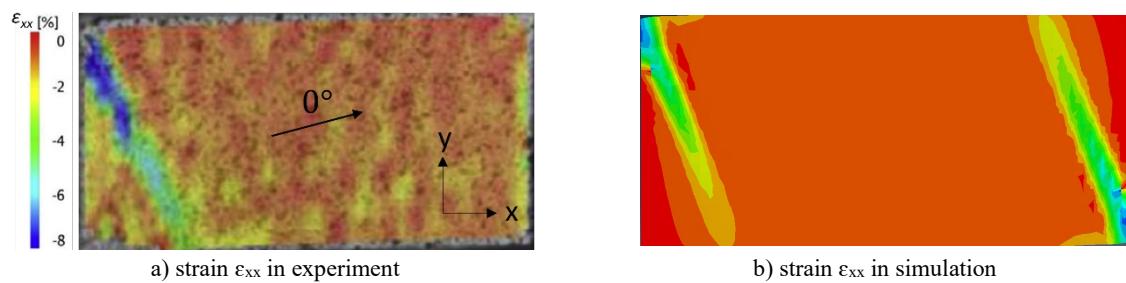


Figure 1. Measured and predicted dynamic failure of 15° off-axis specimen in compression. Experiments are from Koerber et al. [3].

In the present paper the model is applied to simulate quasi-static and dynamic off-axis tension and compression experiments on composite coupons studied in two of our collaborative projects. The composite is a unidirectional (UD) carbon fibre non-crimp fabric (NCF) uniweave impregnated with LY556 epoxy, manufactured by Resin Transfer Moulding (RTM). The tests have been performed using a high-speed hydraulic test machine and a Split Hopkinson Bar (SHB) setup, involving strain rates of up to about 140 /s in tension and 1100 /s in compression.

REFERENCES

- [1] R. Larsson, V. Singh, R. Olsson and E. Marklund, A micromechanically based model for strain rate effects in unidirectional composites. *Mechanics of Materials*, Vol. **148**, pp. 193–212, 2020.
- [2] R. Larsson, V. Singh, R. Olsson and E. Marklund, A micromechanically based model for dynamic damage evolution in unidirectional composites. *International Journal of Solids and Structures*, Vol. **238**, 111368, 2022.
- [3] H. Koerber, J. Xavier and P.P. Camanho, High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation. *Mechanics of Materials*, Vol. **42**, 1004–1019, 2010.