

NONINVASIVE ASSESSMENT OF VENTRICULAR-ARTERIAL COUPLING: FROM THEORY TO APPLICATIONS

**Mohamed Zaid¹, Salman Ahmad², Laurel Despins³, Mihail Popescu⁴, James Keller¹,
Marjorie Skubic¹, Craig A. Emter⁵ and Giovanna Guidoboni^{1,6}**

¹ Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA

² Surgery, University of Missouri, Columbia, MO, USA

³ Sinclair School of Nursing, University of Missouri, Columbia, MO, USA

⁴ Health Management and Informatics, University of Missouri, Columbia, MO, USA

⁵ Biomedical Sciences, University of Missouri, Columbia, MO, USA

⁶ Mathematics, University of Missouri, Columbia, MO, USA

Key Words: Ventricular-arterial coupling, cardiovascular modelling, noninvasive health monitoring.

Ventricular-arterial coupling (VAC) is considered as the cornerstone of the synergic interplay between the pumping action of the heart and the impedance of the arterial network that enables the blood circulation through the cardiovascular system. The VAC is typically quantified via the ratio between the effective arterial elastance (E_a) and the left ventricular (LV) end-systolic elastance (E_{es}) (VAC ratio = E_a/E_{es}). The gold standard technique for estimating the VAC ratio is left ventricular catheterization, by which pressure-volume (P-V) loops can be generated and E_a and E_{es} are estimated. However, LV catheterization is highly invasive and has a limited applicability in clinical practice. Currently, the VAC ratio is estimated by a volumetric ratio calculated from echocardiographic measurements based on a single-beat method. However, this method suffers from oversimplification, does not inform on E_a and E_{es} separately, and can only be done periodically due to logistic issues (cost, need for specialized equipment and training). Therefore, the main goal of this study is to propose a non-invasive VAC assessment by quantitative measurements of both cardiac and arterial functions that are easy to collect, thereby increasing its clinical impact. By means of a mechanism-driven closed-loop model of the cardiovascular system [1], we have identified three noninvasive signals whose features are expected to change in a differently depending on whether the VAC changes because of alterations to E_a or E_{es} . The three signals are: electrocardiogram (ECG), seismocardiogram (SCG) and ballistocardiogram (BCG). The potential of this technique based on synchronous ECG-SCG-BCG acquisition for noninvasive VAC monitoring and interpretation is currently being evaluated on animal and human subjects [2].

REFERENCES

- [1] Guidoboni, G. et al., *Cardiovascular function and ballistocardiogram: a relationship interpreted via mathematical modeling*. IEEE Transactions on Biomedical Engineering (2019) 66(10):2906–2917.
- [2] Zaid, Mohamed, et al., *Noninvasive cardiovascular monitoring based on electrocardiography and ballistocardiography: a feasibility study on patients in the surgical intensive care unit*. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2021.