

Towards entropy–stable finite element moment methods for the Boltzmann equation

Michael Abdelmalik¹, Irene Gamba², Torsten Kessler³ and Sergej Rjasanow³

¹ Eindhoven University of Technology, m.abdel.malik@tue.nl

² University of Texas at Austin

³ Universität des Saarlandes

Keywords: *Boltzmann equation, kinetic theory, moment methods, finite elements, hyperbolic systems, entropy stable, multi-scale*

In this talk we develop an entropy-stable finite-element-moment method for the Boltzmann equation with binary collisions [1] in bounded domains. The proposed method engenders a discontinuous-Galerkin method in position and temporal dependence, and a moment-method in velocity dependence. We base our moment-method on a converging sequence of approximations to the binary collision operator \mathcal{C} , denoted by \mathcal{C}_N . We associate with each member of the sequence a φ -divergence-based renormalization-map and entropy [2]. We show that each \mathcal{C}_N inherits salient properties from \mathcal{C} , such as the preservation of the collision invariants, Galilean invariance, and that the linearization of \mathcal{C}_N coincides with the linearization of \mathcal{C} . We show that our proposed finite-element-moment method is entropy-stable for each member of the sequence of approximations to \mathcal{C} . Finally, we apply our finite-element-moment method to the Boltzmann equation with collision operator \mathcal{C} and demonstrate the corresponding approximation properties, using benchmark test cases, in comparison to Direct Simulation Monte Carlo.

REFERENCES

- [1] Cercignani C. *The Boltzmann equation and its Applications* Springer (1988).
- [2] Abdelmalik, M.R.A. and van Brummelen, E.H. Moment Closure Approximations of the Boltzmann Equation Based on φ –Divergences. *J. Stat. Phys.* (2016).