

An entropy–stable discontinuous Galerkin approximation of the Spalart–Allmaras turbulence model for the compressible Reynolds Averaged Navier–Stokes equations

Diego Lodares^{*,1}, Juan Manzanero², Esteban Ferrer³, Eusebio Valero⁴

¹ ETSIAE-UPM - School of Aeronautics, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, E-28040 Madrid, Spain. E-mail: d.lodares@alumnos.upm.es

² ETSIAE-UPM - School of Aeronautics, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, E-28040 Madrid, Spain. E-mail: juan.manzanero@upm.es

³ ETSIAE-UPM - School of Aeronautics, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, E-28040 Madrid, Spain. E-mail: esteban.ferrer@upm.es

⁴ ETSIAE-UPM - School of Aeronautics, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, E-28040 Madrid, Spain. E-mail: eusebio.valero@upm.es

Keywords: *Reynolds averaged Navier–Stokes, Spalart–Allmaras, entropy–stable, discontinuous Galerkin, high–order methods*

We present an entropy–stable formulation for the compressible Reynolds Averaged Navier–Stokes (RANS) Discontinuous Galerkin (DG) equations and the Spalart–Allmaras one–equation closure. The model is designed to satisfy an entropy law, which includes free– and no–slip wall boundary conditions. We then construct a high–order DG approximation of the model that satisfies the summation–by–parts simultaneous–approximation–term (SBP–SAT) property. With the help of a discrete stability analysis, we construct two approximations: a kinetic energy preserving scheme based on Pirozzoli’s two–point flux and a thermodynamic entropy conserving one based on Chandrashekar’s split–form. The schemes are applicable to, and the stability proofs hold for, three–dimensional unstructured meshes with curvilinear hexahedral elements. We test the convergence of the schemes on a manufactured solution for increasing polynomial orders and mesh refinement levels, to then assess their numerical stability by propagating a flow from a random initial condition, and finally solve the flow around a two–dimensional flat plate and a NACA 0012 airfoil, comparing numerical results with those available in the literature. The proposed schemes are entropy–stable, and provide accurate solutions for the selected test cases.

REFERENCES

- [1] J. Manzanero, G. Rubio, D. A. Kopriva, E. Ferrer, E. Valero, An entropy–stable discontinuous Galerkin approximation for the incompressible Navier–Stokes equations with variable density and artificial compressibility, *Journal of Computational Physics* 408 (2020) 109241.
- [2] A. Crivellini, V. D’Alessandro, F. Bassi, A Spalart–Allmaras turbulence model implementation in a discontinuous Galerkin solver for incompressible flows, *Journal of*

Computational Physics 241 (2013) 388 – 415.

- [3] G. J. Gassner, A. R. Winters, D. A. Kopriva, Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, Journal of Computational Physics 327 (2016) 39–66.
- [4] D. C. Del Rey Fernández, J. E. Hicken, D. W. Zingg, Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations, Computers & Fluids 95 (2014) 171–196.
- [5] M. Svärd, J. Nordström, Review of summation-by-parts schemes for initial-boundary-value problems, Journal of Computational Physics 268 (2014) 17–38.