

Digital twins of electric machines

Karim Cherifi^{*1}, Philipp Schulze¹ and Volker Mehrmann¹

¹ Institut für Mathematik, Technische Universität Berlin, Strasse des 17. Juni 136, 10623 Berlin, Germany. Email address: cherifi@math.tu-berlin.de, pschulze@math.tu-berlin.de, mehrmann@math.tu-berlin.de

Keywords: *digital twin, electric machines, surrogate modeling, reduced order modeling, port-Hamiltonian systems.*

Digital twins are used in industrial processes to improve and optimize physical devices using simulations and real-time data [1]. In this talk, we discuss the challenges and limitations facing the development of a digital twin for electric machines [2].

To achieve its purpose, a digital twin requires accurate and real-time simulations of the physical device. The derivation of these models from physical laws like Maxwell equations provides sound mathematical basis. However, these models generally bring a computational burden that render real-time simulations impossible. A solution to this problem is the use of model order reduction [3] to obtain simulations that are fast and accurate enough to be used in a digital twin. Alternatively, one may use surrogate and data-driven modeling to obtain fast calculation models that can be readily constructed and adapted based on the data coming from the physical asset. This results in a hierarchy of models that can be implemented in the digital twin and used based on the application.

Electric machines are multiphysics systems that involve physical phenomena from three main fields: electromagnetic, mechanical and thermal fields. Their coupling is needed to obtain an overall simulation model that preserves the physical meaning of each submodel while being computationally efficient. Port-Hamiltonian (pH) systems [4] provide such a framework that can work across different physical domains and scales. In this work, we discuss how pH systems can help in the development of digital twins for electric machines.

REFERENCES

- [1] A. Rasheed , O. San and and T. Kvamsdal, Digital twin: Values, challenges and enablers from a modeling perspective. *IEEE Access* **8**: pp. 21980–22012, 2020.
- [2] J. A. Melkebeek, *Modelling and Dynamic Behaviour of Induction Machines*, Springer International Publishing, Cham, 2018.
- [3] D. Hartmann, M. Herz, and U. Wever. Model order reduction a key technology for digital twins. In *W. Keiper, A. Milde, and S. Volkwein, Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing*, Springer International Publishing, Cham, pp. 167–179, 2018.
- [4] V. Mehrmann and B. Unger, *Control of port-hamiltonian differential-algebraic systems and applications*, arXiv:2201.06590, 2022.