

WEIGHTED QUADRATURE RULES FOR HIERARCHICAL B-SPLINES

C. Giannelli¹, T. Kanduč², M. Martinelli^{3*}, G. Sangalli^{3,4} and M. Tani³

¹ Dipartimento di Matematica e Informatica “U. Dini”, Università degli Studi di Firenze, Italy
e-mail: carlotta.giannelli@unifi.it

² Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
e-mail: tadej.kanduc@fmf.uni-lj.si

³ Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes” – CNR, Pavia, Italy
e-mail: [martinelli;tani]@imat.cnr.it

⁴ Dipartimento di Matematica, Università degli Studi di Pavia, Italy
e-mail: giancarlo.sangalli@unipv.it

Key Words: *Weighted Quadrature, Isogeometric Analysis, Hierarchical B-splines*

Weighted quadrature (WQ) has been introduced, in [1], to reduce the number of quadrature points when computing Galerkin integrals for B-spline basis functions. In combination to the sum-factorization and other implementational techniques, it reduces significantly the cost of formation of isogeometric matrices. Further efficiency is possible when only the matrix-vector multiplication is needed, that can be achieved in $O(N p^{d+1})$ FLOPS without computing the matrix itself, see [2].

The advantage of WQ is that the number of exactness conditions to be imposed is less than for Gauss quadrature, even for generalized Gauss quadrature as in [3, 4, 5, 6] or reduced quadrature [7, 8]. Indeed, for WQ the number of quadrature points is mildly dependents on the spline degree.

In this work we extend WQ to hierarchical splines. Since hierarchical splines are a selection of standard B-splines on different levels, we can define hierarchical WQ as a linear combination of standard WQ on different tensor-product levels. We present an algorithm for WQ on hierarchical splines of any dimension and we show its performance for adaptive L2 projection on 2D and 3D geometries.

This work is partially supported by the ERC Project CHANGE (grant agreement No 694515).

REFERENCES

- [1] F. Calabro, G. Sangalli, M. Tani, Fast formation of isogeometric Galerkin matrices by weighted quadrature, *Comput. Methods Appl. Mech. Engrg.* 316 (2017), 606-622.
- [2] G. Sangalli, M. Tani, Matrix-free weighted quadrature for a computationally efficient isogeometric k-method, *Comput. Methods Appl. Mech. Engrg.* 338 (2018), 117-133
- [3] T. J. Hughes, A. Reali, G. Sangalli, Efficient quadrature for nurbs-based isogeometric analysis, *Comput. Methods Appl. Mech. Engrg.* 199 (5-8) (2010), 301-313.
- [4] F. Auricchio, F. Calabro, T. J. Hughes, A. Reali, G. Sangalli, A simple algorithm for obtaining nearly optimal quadrature rules for nurbs-based isogeometric analysis, *Comput. Methods Appl. Mech. Engrg.* 249 (2012), 15-27.
- [5] M. Bartoň, V. M. Calo, Gauss-Galerkin quadrature rules for quadratic and cubic spline spaces and their application to isogeometric analysis, *Computer-Aided Design* 82 (2017), 57-67.
- [6] M. Bartoň, V. M. Calo, Optimal quadrature rules for odd-degree spline spaces and their application to tensor-product-based isogeometric analysis, *Comput. Methods Appl. Mech. Engrg.* 305 (2016), 217-240.
- [7] R. R. Hiemstra, F. Calabro, D. Schillinger, T. J. Hughes, Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis, *Comput. Methods Appl. Mech. Engrg.* 316 (2017), 966-1004.
- [8] D. Schillinger, S. J. Hossain, T. J. Hughes, Reduced b閦ier element quadrature rules for quadratic and cubic splines in isogeometric analysis, *Comput. Methods Appl. Mech. Engrg.* 277 (2014) 1-45.