

STABLE NUMERICAL RECONSTRUCTION OF NON-SMOOTH BOUNDARY DATA IN STEADY-STATE ANISOTROPIC HEAT CONDUCTION

*Mihai Bucataru^{1,2}, Iulian Cîmpean^{1,3} and Liviu Marin^{1,2}

E-mails: *mihai.bucataru@fmi.unibuc.ro, iulian.cimpean@unibuc.ro and
liviu.marin@fmi.unibuc.ro

¹ Department of Mathematics, Faculty of Mathematics and Computer Science,
University of Bucharest, 14 Academiei, 010014 Bucharest, Romania

² “Gheorghe Mihoc – Caius Iacob” Institute of Mathematical Statistics and Applied
Mathematics of the Romanian Academy, 13 Calea 13 Septembrie, 050711 Bucharest,
Romania

³ “Simion Stoilow” Institute of Mathematics of the Romanian Academy, 21 Calea
Griviței, 010702 Bucharest, Romania

Keywords: *inverse problem; anisotropic heat conduction; control problem; minimisation
problem; regularisation; finite element method (FEM)*

We investigate a situation that usually occurs for numerous real life problems in science and engineering, namely the reconstruction of the missing non-smooth thermal boundary conditions (i.e. temperature and normal heat flux) on an inaccessible portion of the boundary of an anisotropic solid from the knowledge of over-prescribed data (i.e. Cauchy data) on the remaining and accessible boundary in the steady-state case. It is well-known that the solution to this inverse Cauchy problem, in a very weak sense in this case, is unstable, provided that such a solution exists. Consequently, a stabilising method is developed herein based on *a priori* knowledge on the solution to this Cauchy problem and the smoothing nature of the corresponding direct problems employed. More precisely, this inverse problem is approached by transforming it into a control one which reduces to solving an appropriate minimisation problem in a suitable function space. The latter is approached by employing an appropriate variational method which yields a gradient-based iterative algorithm that consists, at each step, of two direct and two corresponding adjoint problems. It is worth mentioning that this algorithm is designed to approximate merely L^2 -boundary data, hence the notion of solution and the convergence analysis require special attention. The numerical implementation is realised for two-dimensional non-homogeneous anisotropic solids using the finite element method (FEM), whilst regularisation is achieved by ceasing the iterative process according to three stopping regularising criteria.

Acknowledgements. The work of Mihai Bucataru and Liviu Marin was supported by a grant of the Romanian Ministry of Research and Innovation, CNCS–UEFISCDI, project number PN–III–P1–1.1–TE–2019–0348, within PNCDI III, whilst the work of Iulian Cîmpean was supported by a grant of the Romanian Ministry of Research and Innovation, CNCS–UEFISCDI, project number PN–III–P1–1.1–PD–2019–0780, within PNCDI III.