

Topology optimization of nonlinear structures in industrial context

Grégoire Allaire¹, Jeet Desai^{2,3} and François Jouve³

¹ CMAP, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.
gregoire.allaire@polytechnique.fr

² IRT SystemX, Gif-sur-Yvette, France. jeetdesai27@gmail.com

³ Université de Paris and Sorbonne Université, CNRS, LJLL, F-75006 Paris, France.
francois.jouve@u-paris.fr

Keywords: *Topology optimization, level-set method, nonlinear mechanics*

The TOP project, housed by IRT SystemX, gathered between 2018 and 2021 some prominent industrial companies (Renault, Airbus, Safran,...) and some academics on various developments of the level set method for shape and topology optimization of structures in industrial context.

One of the topics considered was nonlinear mechanics, namely plasticity and fracture. Both problems are not shape-differentiable and need to be regularized and penalized in order to be addressed by the shape optimization algorithms. We will present the techniques used to tackle the problems, and some numerical simulations.

REFERENCES

- [1] J.Desai, Topology optimization in contact, plasticity, and fracture mechanics using a level-set method, *PhD thesis, Université de Paris*, September 2021.
- [2] J.Desai, G.Allaire, F.Jouve, C.Mang, Topology optimization in quasi-static plasticity with hardening using a level-set method. *Struct Multidisc Optim*, Vol. **64**, pp. 3163–3191, 2021.
- [3] J.Desai, G.Allaire, F.Jouve, Topology optimization of structures undergoing brittle fracture. *to appear in J. Comp. Phys.*, 2022.