

Microstructurally-Based Statistical Predictions of Failure in Hydrided Zirconium Materials

T. Hasan¹, L. Capolungo² and M.A. Zikry³

¹ North Carolina State University, tshasan@ncsu.edu, ² Los Alamos National Laboratories, laurent@lanl.gov

³ North Carolina State University, zikry@ncsu.edu

Key Words: *fracture mechanics, dislocation-density crystalline plasticity, statistically-based machine learning failure criteria*

A dislocation-density based multiple slip crystalline plasticity formulation and a microstructurally-based fracture methodology have been used in conjunction with a new statistical framework to develop a representation of failure probabilities for hydrided Zircalloy-4 materials. Using a genetic learning algorithm and Bayes' rule, an extreme value theory (EVT) of fracture was obtained for a stochastic representation of crack nucleation and propagation. This resulting validated model of crack probability can be applied either topographically to generate contours of crack likelihood on a representative material or applied directly to the input parameters to provide a library of fracture probabilities for a broad range of microstructural characteristics and mechanisms. The proposed framework can provide a framework for understanding material failure, and how fundamental material mechanisms can be used to inform predictions at the microstructural scale.